[docker] Docker资源管理

一、docker资源控制

Docker通过Cgroup 来控制容器使用的资源配额,包括CPU、内存、磁盘三大方面,基本覆盖了常见的资源配额和使用量控制。Caroup 是ControlGroups的缩写,是Linux 内核提供的一种可以限制、记录、隔离进程组所使用的物理资源(如 cpu、内存、磁盘,io等等)的机制,被LXC、docker等很多项目用于实现进程资源控制。Cgroup本身是提供将进程进行分组化管理的功能和接口的基础结构,I/O或内存的分配控制等具体的资源管理是通过该功能来实现的。

  • 资源限制:可以对任务使用的资源总额进行限制。
  • 优先级分配:通过分配的cpu时间片数量以及磁盘IO带宽大小,实际上相当于控制了任务运行优先级。
  • 资源统计:可以统计系统的资源使用量,如cpu时长,内存用量等。
  • 任务控制: cgroup可以对任务 执行挂起、恢复等操作。

二、docker占用宿主机cpu的限制

2.1 cpu的使用率上限 

 Linux通过CFS (Completely Fair Scheduler,完全公平调度器)来调度各个进程对ceu的使用。CFS默认的调度周期是100ms 。我们可以设置每个容器进程的调度周期,以及在这个周期内各个容器最多能使用多少CPU时间。

使用--cpu-period 即可设置调度周期,使用--cpu-quota即可设置在每个周期内容器能使用的CPU时间。两者可以配合使用。CFS周期的有效范围是 1ms~1s,对应的--cpu-period 的数值范围是1000~1000000。而容器的CPU配额必须不小于1ms,即--cpu-quota的值必须>= 1000。而容器的CPU配额必须不小于1ms,即--cpu-quota的值必须>= 1000。

docker run -itd --name test5 centos:7 /bin/bashdocker ps -acd/sys/fs/cgroup/cpu/docker/9d415515c01e61a335bdc841e19b60a1ce54dd3cbaefeab7844fdcf785cd5aa4/cd /sys/fs/cgroup/cpu/docker/
-1
cat cpu.cfs_period_us 
100000#cpu.cfs_period_us:cpu分配的周期(微秒,所以文件名中用 us 表示),默认为100000。
#cpu.cfs_quota_us:表示该cgroups限制占用的时间(微秒),默认为-1,表示不限制。 如果设为50000,表示占用50000/100000=50%的CPU。

进行CPU压力测试 
docker exec -it test5 bash
vi /cpu.sh
#!/bin/bash
i=0
while true
do
let i++
donechmod +x /cpu.sh
./cpu.shtop					#可以看到这个脚本占了很多的cpu资源

设置50%的比例分配CPU使用时间上限 
docker run -itd --name test6 --cpu-quota 50000 centos:7 /bin/bash	#可以重新创建一个容器并设置限额
或者
cd/sys/fs/cgroup/cpu/docker/9d415515c01e61a335bdc841e19b60a1ce54dd3cbaefeab7844fdcf785cd5aa4/
echo 50000 > cpu.cfs_quota_us
docker exec -it 3ed82355f811 /bin/bash
./cpu.shtop					#可以看到cpu占用率接近50%,cgroups对cpu的控制起了效果#在多核情况下,如果允许容器进程完全占用两个 CPU, 则可以将 cpu-period 设置为 100000( 即 0.1 秒), cpu-quota设置为 200000(0.2 秒)。

 

2.2 设置CPU资源占用比(设置多个容器时才有效) 

注意:该方式需要设置多个容器时才会生效 

 创建容器时可以使用选项  --cpu-shares  数值(该数值要为1024的倍数,1024代表一份,当个容器占用cpu的份额由自身分配的份数除于所有容器占用cpu的份数,就为该容器所占用cpu资源的百分比)

[root@localhost ~]#docker run -id --name b1 --cpu-shares 2048 centos:7[root@localhost ~]#docker run -id --name b2 --cpu-shares 1024 centos:7[root@localhost ~]#docker run -id --name b3 --cpu-shares 1024 centos:7创建三个容器为 b1 和 b2 和 b3,设置容器的权重,使得b1和b2和b3的CPU资源占比为1/2和1/4和1/4。

 开启三个终端,启动容器压测:

#三个容器均为以下压测操作
#下载压测工具依赖环境
yum install -y epel-release
#下载压测工具
yum install -y stress
#进行四个线程压测
stress -c 2#再开启一个终端查看测试结果
docker stats

查看容器运行状态(动态更新) 

由测试结果, 可以看到在cPU进行时间片分配的时候,容器b1比容器b2和b3多一倍的机会获得cpu的时间片。但分配的结果取决于当时主机和其他容器的运行状态,实际上也无法保证容器 b2和b3一定能获得cpu时间片

比如容器b2和b3的进程一直是空闲的,那么容器b1是可以获取比容器b2和b3更多的cpu时间片的。极端情况下,例如主机上只运行了一个容器,即使它的cpu份额只有50,它也可以独占整个主机的cpu资源。

 Cgroups 只在容器分配的资源紧缺时,即在需要对容器使用的资源进行限制时,才会生效。因此,无法单纯根据某个容器的cpu 份额来确定有多少cpu资源分配给它,资源分配结果取决于同时运行的其他容器的CPU分配和容器中进程运行情况。

2.3 设置容器绑定指定的cpu 

查看主机中的cpu编号 
top   
按数字“1”

进行绑核创建容器  
[root@localhost ~]#docker run -id --name b4 --cpuset-cpus 1 centos:7

 压力测试:

yum install -y epel-release
yum install -y stressstress -c 1

三、内存使用的限制

 3.1 限制容器可以使用的最大内存

 m (或--memory=)选项用于限制容器可以使用的最大内存 

docker run -itd --name d1 -m 512m centos:7 /bin/bash
docker  stats

3.2 限制容器可用的swap 大小  

#限制可用的swap 大小,--memory-swap  

●强调一下, --memory-swap是必须要与 --memory(或-m)一起使用的。

●正常情况下, --memory-swap 的值包含容器可用内存和可用swap 。

●所以 -m 300m --memory-swap=1g 的含义为:容器可以使用300M 的物理内存,并且可以使用700M (1G - 300M)的swap。  ​  设置为0或者不设置,则容器可以使用的 swap 大小为 -m 值的两倍。  如果 --memory-swap 的值和 -m 值相同,则容器不能使用swap。  如果 --memory-swap 值为 -1,它表示容器程序使用的内存受限,而可以使用的swap空间使用不受限制(宿主机有多少swap 容器就可以使用多少)。

 #--memory-swap 的值包含容器可用内存和可用swap,减去-m的值才是可用swap的值。#表示容器可以使用512M的物理内存,并且可以使用512M的swap。因为1g减去512m的物理内存,剩余值才是可用swap。docker run -itd --name d2 -m 512m --memory-swap=1g centos:7 bash​​#--memoryswap值和 -m 的值相同,表示容器无法使用swapdocker run -itd --name d3 -m 512m --memory-swap=512m centos:7 bash​​# --memory-swap 的值设置为0或者不设置,则容器可以使用的 swap 大小为 -m 值的两倍。docker run -itd --name d4 -m 512m centos:7 bash​​# --memory-swap 值为 -1,它表示容器程序使用的内存受限,但可以使用的swap空间使用不受限制(宿主机有多少swap 容器就可以使用多少)。docker run -itd --name d5 -m 512m --memory-swap=-1 centos:7 bash

四、对磁盘IO的配置控制(blkio)的限制  

-device-read-bps:限制某个设备上的读速度bps ( 数据量),单位可以是kb、mb (M)或者gb。

--device-write-bps : 限制某个设备上的写速度bps ( 数据量),单位可以是kb、mb (M)或者gb。

该速度是指每秒钟进行读写操作1M,1G或者是1kb 

--device-read-iops :限制读某个设备的iops (次数)

--device-write-iops :限制写入某个设备的iops ( 次数)

4.1 默认情况下容器的写速度 

[root@localhost ~]#docker run -id --name e1  centos:7
[root@localhost ~]#docker exec -it e1 bash
[root@8657384cb483 /]# dd if=dev/zero of=/mnt/test.txt bs=10M count=10 oflag=direct
## oflag=direct 规避文件读写系统中所带来的缓存,避免影响测试结果

4.2 进行写速度限制的容器创建  

docker run -it --name test10 --device-write-bps /dev/sda:1mb centos:7 /bin/bashdd if=dev/zero of=/mnt/test.txt bs=10M count=10 oflag=direct

五、清除docker占用的磁盘空间 

docker system prune -a 可用于清理磁盘,删除关闭的容器、无用的数据卷和网络。 

docker system prune -a 

 

总结 

对cpu的限制参数

设置单个容器进程能够使用的CPU使用率上限
针对新建的容器:
docker run --cpu-period 单个CPU调度周期时间(1000~1000000)  --cpu-quota 容器进程能够使用的最大CPU时间(>=1000)针对已存在的容器:
修改 /sys/fs/cgroup/cpu/docker/容器ID/ 目录下的 cpu.cfs_period_us(单个CPU调度周期时间)  cpu.cfs_quota_us(容器进程能够使用的最大CPU时间)  文件的值设置多个容器的CPU占用份额(只能在多个容器同时运行且CPU资源紧张时生效)
docker run --cpu-shares 容器进程最大占用CPU的份额(值为1024的倍数)设置容器绑定指定的CPU
docker run --cpuset-cpus CPUID1[,CPUID2,....]

对内存的限制 

设置容器能够使用的内存和swap的值
docker run -m 内存值  --memory-swap 内存和swap的总值设置 0 或 不设置,表示swap为内存的2倍设置 -1,表示不限制swap的值,宿主机有多少容器即可使用多少设置 与 -m 一样的值,表示不使用swap

对磁盘IO的限制 

docker run --device-read-bps    磁盘设备文件路径:速率                  #限制容器在某个磁盘上读的速度--device-write-bps   磁盘设备文件路径:速率                  #限制容器在某个磁盘上写的速度--device-read-iops   磁盘设备文件路径:次数                  #限制容器在某个磁盘上读的次数--device-write-iops  磁盘设备文件路径:次数                  #限制容器在某个磁盘上写的速度

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/427926.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多线程编程漫谈

文章目录 如何复用线程?多线程编程常用的设计模式Future 模式生产者 - 消费者模式 小结 多线程是很多人在提升技术能力的过程中遇到的第一个坎,关于这部分的资料在网络上已经很多了,但是这些资料往往只重知识点的输出,很少和实际的…

洛谷刷题-【入门2】分支结构

目录 1.苹果和虫子 题目描述 输入格式 输出格式 输入输出样例 2.数的性质 题目描述 输入格式 输出格式 输入输出样例 3.闰年判断 题目描述 输入格式 输出格式 输入输出样例 4.apples 题目描述 输入格式 输出格式 输入输出样例 5.洛谷团队系统 题目描述 …

【原创】linux为什么不是实时操作系统

文章目录 一、什么是实时操作系统(RTOS)?二、linux为什么不是实时操作系统?中断响应时间中断处理时间任务调度时间1、No Forced Preemption(Server)2、Voluntary Kernel Preemption(Desktop)3、Preemptible Kernel(Low-Latency De…

基于springboot+vue的IT技术交流和分享平台系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 研究背景…

某跆拳道俱乐部数据由34个节点组成,由于管理上的分歧,俱乐部要分解成两个社团。

import networkx as nx import matplotlib.pyplot as plt# 创建一个图表示跆拳道俱乐部的网络 G nx.Graph()# 添加34个节点,表示俱乐部的成员或其他相关实体 nodes list(range(1, 35)) G.add_nodes_from(nodes)# 添加边表示成员之间的关系 # 这里仅是示例&#xf…

动态设置和获取类实例变量(setattr、getattr)

动态设置和获取类实例变量 写在前面的话setattr 示例代码getattr 示例代码: 写在前面的话 在pyqt5的界面设置中,有很多相同的Qlabel、Qpushbutton、Qslider的设置,这些具有相同属性的界面模块可能需要不同的触发方法,定义为self.…

R语言:资金评估

代码示例 # 1. 导入数据 fund_data <- read.csv("D:/R语言/基金.csv", sep ,, header TRUE, na.strings "--") fund_data <- fund_data[-1] fund_data[is.na(fund_data)] <- 0# 2. Z-score标准化函数 standardize <- function(x) {return…

树的学习day01

树的理解 树是一种递归形式的调用 树是由于多个结点组成的有限集合T 树中有且仅有一个结点称为根 当结点大于1的时候&#xff0c;往往其余的结点为m个互不相交的有限个集合T1,…,Tm&#xff0c;每个互不相交的有限集合本身右是一棵树&#xff0c;称为这个根的子树 空树也是树 关…

国标GB28181协议EasyCVR启动失败报错“Local Machine Check Error”的解决方法

国标GB28181安防监控系统EasyCVR平台采用了开放式的网络结构&#xff0c;可支持4G、5G、WiFi、有线等方式进行视频的接入与传输、处理和分发。安防视频监控平台EasyCVR还能支持GIS电子地图模式&#xff0c;基于监控摄像头的经纬度地理位置信息&#xff0c;将场景中的整体安防布…

git 对象压缩及垃圾对象清理

git 对象压缩及垃圾对象清理 这篇文章让我们来看看 git 的对象压缩机制&#xff0c;前面的几篇文章我们提到&#xff0c;在执行 git add 命令会会把文件先通过 zlib 压缩后放入到「暂存区」&#xff0c;我们先看看这个步骤&#xff1a; 我们这个实例中有一个 1.28m 的 index.…

CPU运行过程

取指令阶段&#xff08;①②③&#xff09;&#xff1a;①②过程指令地址寄存器&#xff08;INSTUCTION ADDRESS REGISTER&#xff09;从0地址或指定地址开始读存入RAM中的程序&#xff0c;③过程将读出的数据复制到指令寄存器&#xff08;INSTRUCTION REGISTER&#xff09;中。…

民用激光雷达行业简析

01. 激光雷达是“机器之眼” • 激光雷达是一个通过发射激光并接受发射激光同时对其进行信号处理&#xff0c;从而获得周边物体距离等信息的主动测量装置。 • 激光雷达主要由光发射、光扫描、光接收三大模块组成。光发射模块集成了驱动、开关和光源等芯片。光接收模块集成了…