Flink中的容错机制

 一.容错机制

在Flink中,有一套完整的容错机制来保证故障后的恢复,其中最重要的就是检查点。

1.1 检查点(Checkpoint

在流处理中,我们可以用存档读档的思路,将之前某个时间点的所有状态保存下来,这份存档就被称为“检查点(CkeckPoint)”。

当Flink程序异常重启时,我们就可以在检查点中“读档”,恢复出异常之前的状态。

 1.1.1 检查点的保存

(1) 周期性的触发保存

在Flink中,检查点的保存是周期性触发的,间隔时间可以进行设置。但是不建议保存太频繁,会消耗很多资源来做检查点。

(2) 保存的时间点

我们应该在所有任务(算子)都恰好处理完一个相同的输入数据的时候,将它们的状态保存下来。

这样做可以实现一个数据被所有任务(算子)完整地处理完,状态得到了保存。

如果出现故障,我们恢复到之前保存的状态,故障时正在处理的所有数据都需要重新处理;我们只需要让源(source)任务向数据源重新提交偏移量、请求重放数据就可以了(即重新将故障时的数据读入Flink)。当然这需要源任务可以把偏移量作为算子状态保存下来,而且外部数据源能够重置偏移量;kafka就是满足这些要求的一个最好的例子。

(3) 保存的具体流程

检查点的保存,最关键的就是要等所有任务将“同一个数据”处理完毕。

例如词频统计,依次输入“hello”,“world”,“hello”,“flink”,“hello”,“world”,“hello”,“flink”…

例如每个任务算子都处理完“hello”之后,可以保存自己的状态。

1.1.2 从检查点恢复状态

(1)检查点的保存具体流程

接着上面的例子,当我们需要保存检查点时,就是在所有任务算子将“同一个数据”处理完毕后,对所有状态进行快照并保存。例如输入“hello”,“world”,“hello”,“flink”,“hello”,“world”,“hello”,“flink”…在第三个数据“hello”被所有任务处理完时,做了检查点,保存了当前所有状态。

(2) 处理数据过程发生故障

当发生故障时,就需要找到最近一次成功保存的检查点来恢复状态。

例如在第三条数据“hello”处理完后保存了一次检查点,然后继续运行,正常处理了第四条数据“flink”,随即在处理第五条数据“hello”时发生故障。

此时,source任务处理完毕,偏移量为5,map任务也处理完毕,处理到KeyBy时发生故障,此时状态未保存。

(3) 重启应用 -> 读取检查点,重置状态 

1.重启应用

遇到故障后,需要重启Flink程序,届时,重启后的所有任务的状态会被清空

2.读取检查点,重置状态 

找到最近一次保存的检查点,从中读出每个算子的快照,并分别填充到对于的算子状态中,这样Flink内部算子的状态就恢复到了保存检查点的那一刻,就是处理完第三条数据时。

3.重置偏移量

 此时从检查点恢复状态后还存在一个问题,如果接着处理故障后的数据也就是第6、7条数据,那么从最后一次检查点到故障前的数据(第4、5条的“flink”,“hello”)则被丢弃了,就造成了计算结果错误。

为了不丢数据,我们应该从最后一次保存的检查点后重新读取数据(重放),这可以通过Source任务向外部系统提交偏移量(offset)来解决。

这样,整个系统的状态已经完全回退到了检查点保存完成的那一时刻。

4.继续处理数据

接下来继续处理重放的第4、5条数据,接着处理后续的数据。

在处理完上次发生故障的数据时,就已经完全恢复了正常,似乎没有发生过故障,也没有造成重复计算导致计算错误,这就保证了计算结果的准确性。在分布式系统中,这叫做实现了“精准一次”(exactly-once)的状态一致性保证。 

1.1.3 检查点算法

在Flink中,采用了基于Chandy-Lamport算法的分布式快照,可以在不暂停整体流处理的前提下,将状态备份保存到检查点。

1.1.3.1 检查点分界线(Barrier)

借鉴水位线的设计,在数据流中插入一个特殊的数据结构,专门用来表示触发检查点保存的时间点。收到保存检查点的指令后,Source任务可以在当前数据流中插入这个结构;之后的所有任务只要遇到它就开始对状态做持久化快照保存。由于数据流是保持顺序依次处理的,因此遇到这个标识就代表之前的数据都处理完了,可以保存一个检查点;而在它之后的数据,引起的状态改变就不会体现在这个检查点中,而需要保存到下一个检查点。

这种特殊的数据形式,把一条流上的数据按照不同的检查点分隔开,所以就叫做检查点的“分界线”(Checkpoint Barrier)。

具体实现:

在JobManager中有一个“检查点协调器”,专门用来协调处理检查点相关的工作。检查点协调器会定期向TaskManager发出指令,要求保存检查点(携带检查点ID)。TaskManager会让所有的Source任务把自己的偏移量(Source任务状态)保存起来,并将带有检查的ID的分界线插入当前数据流中,然后该分界线会像正常数据一样向下游传递,当下游算子任务遇到分界线则保存自己的状态。

简单来说,就是在该需要保存检查点时,JobManager中的“检查点协调器”会向TaskManager发出指令要求保存检查点,这时,TaskManager会在会让所有的Source任务保存自己的状态,并在当前流插入一个特殊的数据(分界线),分界线会依次向下游传递,当下游的算子遇到分界线就保存自己的状态,这个分界线后面到达的数据则属于下一个检查点的数据了。这也是很符合“流”的概念。

1.1.3.2 分布式快照算法(Barrier对齐的精准一次) 

barrier指示的是“之前所有数据的状态更改保存入当前检查点”:其实是一个“截止时间”的标志。所以在处理多个分区的传递时,也要以是否还会有数据到来作为一个判断标准。

具体实现上,Flink使用了Chandy-Lamport算法的一种变体,被称为“异步分界线快照”算法。算法的核心就是两个原则:

  1. 当上游任务向多个并行下游任务发送barrier时,需要广播出去;
  2. 而当多个上游任务向同一个下游任务传递分界线时,需要在下游任务执行“分界线对齐”操作,也就是需要等到所有并行分区的barrier都到齐,才可以开始状态的保存。

检查点算法的并行场景 

当前应用全局并行度为2,Source也有两个并行任务,分别读取两条数据流,流中数据都是一个一个的单词。此时第一条流读了三条数据,Source偏移量为3.;第二条流读了一条数据,Source偏移量为1。

检查点保存算法具体过程为:

(1)触发检查点:JobManager向Source发送Barrier;

        JobManager发送指令,触发检查点保存;所有的Source任务中插入一个Barrier(分界线),并保存Source的偏移量(状态)。

        说明:检查点保存时,只会保存分界线到来前的所有状态。并且该操作并不会影响其上下游算子任务的正常运行。 

(2)Barrier发送:向下游广播发送;

        Source状态保存完成后,会返回通知给Source任务,随后Source任务会像JobManager发送ACK来确认检查点完成,然后继续将Barrier(分界线)向下游传递

        此时,由于Source算子和Map算子是一对一的关系,可以直接将Barrier传递给Map算子。

(3)向下游多个并行算子广播分界线,执行分界线对齐;

        Map算子没有状态,则直接将Barrier继续向下游传递。这时由于进行到了KeyBy分区操作,会将Barrier广播到下游并行的两个Sum任务,这时,Sum算子可能会收到来自上游两个并行Map任务的Barrier,所以需要执行“分界线对齐”操作。

        此时,Sum2接收到了上游Map传来的两个Barrier,说明第一条流的三条数据和第二条流的一条数据都已经处理完毕,则可以进行状态保存。而Sum1只收到了一个Barrier,则必须等待Barrier到齐才可以保存状态,此时Sum1分界线后的数据则会被缓存起来,等到当前检查点保存后再处理。分界线前的所有状态才会被保存。

(4)状态保存:有状态的算子将状态保存至持久化。

        各个分区的分界线到齐后,就可以对当前状态做快照,保存到持久化存储。存储完成后,同样继续将Barrier向下游继续传递,并通知JobManager检查点保存完毕。

在这个过程中,每个任务保存自己的状态都是相对独立的,互不影响,并且不影响流中其他算子的正常运行。 

说明:

        由于分界线对齐要求先到达的分区做缓存等待,一定程度上会影响处理的速度;当出现背压时,下游任务会堆积大量的缓冲数据,检查点可能需要很久才可以保存完毕。

        为了应对这种场景,Barrier对齐中提供了至少一次语义以及Flink 1.11之后提供了不对齐的检查点保存方式,可以将未处理的缓冲数据也保存进检查点。这样,当我们遇到一个分区barrier时就不需等待对齐,而是可以直接启动状态的保存了。

1.1.3.3 分布式快照算法(Barrier对齐的至少一次) 

之前的精准一次中,在进行“分界线对齐”时,下游算子必须等待上游算子发来的所有的Barrier到齐才可以进行状态保存,并且Barrier后到达的数据都会被缓存起来,不会被当前检查点所计算和保存。

而Barrier对齐的至少一次指的是,但在等待所有的Barrier到齐之前,到达该分区的数据会被直接计算,并被保存至此检查点。这样的话,如果程序重启,数据重放时,介于两个Barrier之间到达的数据会被再次计算。(至少一次)

优点:数据无需阻塞,也就不需要额外的空间对其存储。

缺点:程序重启可能会造成数据重复计算。

1.1.3.4 分布式快照算法(非Barrier对齐的精准一次)

知识:数据会先进入算子的输入缓冲区,处理完毕后进入该算子的输出缓存区,再发往下游算子的输入缓冲区。

非Barrier对齐的精准一次指的就是,当下游算子接收到一个Barrier时(到达输入缓冲区时),会直接将第一个Barrier放到输入缓冲区末端,继续向下游传递。被第一个Barrier越过的输入缓冲区和输出缓冲区的数据以及在其他Barrier之前的数据会被标记,在进行状态保存时,这些被标记的数据和状态都会被保存进检查点,在进行恢复时,则直接恢复这些数据和状态。

优点:数据无需阻塞

缺点:增大IO压力

1.1.3.5 检查点算法总结

1.Barrier对齐:一个Task等待所有上游发送同编号Barrier到齐后,才对自己的本地状态做备份。

        精准一次:在Barrier对齐过程中,Barrier后面的数据阻塞等待(被缓存),不会越过Barrier。

        至少一次:在Barrier对齐过程中,第一个Barrier后的数据不阻塞,接着计算。

2.非Barrier对齐:一个Task收到第一个Barrier时,开始执行备份,最后一个Barrier到达时结束备份。

        先到的Barrier,将本地状态备份,后面的数据接着计算

        未到的Barrier,之前的数据接着计算,同时将这些数据保存到备份中

        最后一个Barrier到达时,该Task备份结束

1.1.4 检查点配置

检查点的作用是为了故障恢复,我们不能因为保存检查点占据了大量时间、导致数据处理性能明显降低。为了兼顾容错性和处理性能,我们可以在代码中对检查点进行各种配置。

1.1.4.1 检查点常用配置

启用检查点

// 启用检查点,周期性保存(5s),默认Barrier对齐,精准一次
env.enableCheckpointing(1000);

获取检查点配置,后续配置都需要基于checkPointConfig

CheckpointConfig checkpointConfig = env.getCheckpointConfig();

指定检查点存储位置

// 指定检查点存储位置,可以是HDFS,也可以是本地路径
checkpointConfig.setCheckpointStorage("hdfs://hadoop:8001/checkpoint");

检查点执行超时时间

// checkPoint执行超时时间,超时则认为失败(默认十分钟)
checkpointConfig.setCheckpointTimeout(60000);

checkPoint最大并行数量

// 最大同时运行的checkPoint数量,推荐为1,减少程序压力
checkpointConfig.setMaxConcurrentCheckpoints(1);

checkPoint最小等待间隔 

// 最小等待间隔,指的是 上一轮checkPoint结束 到 下次checkPoint开始之间的间隔,大于0,则checkPoint最大数量为1
checkpointConfig.setMinPauseBetweenCheckpoints(1000);

取消作业时(Cancel),checkPoint的数据是否保存在外部存储系统中

checkpointConfig.setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION
);// DELETE_ON_CANCELLATION:任务主动取消,不保留checkPoint;程序异常退出,则不会删除
// RETAIN_ON_CANCELLATION:任务主动取消,保留checkPoint

允许checkPint连续失败次数

// 允许checkPint连续失败次数,默认为0 ,超过时任务会挂掉
checkpointConfig.setTolerableCheckpointFailureNumber(10);

开启非对齐检查点(barrier非对齐)

// 开启非对齐检查点(barrier非对齐)
// 开启要求:checkPoint最大并发为1,并且checkPoint模式为精准一次
checkpointConfig.enableUnalignedCheckpoints();// 设置对齐超时时间
// 默认为0,默认直接使用非Barrier对齐
// 当对齐超时时间>1时,会先使用Barrier对齐,对齐时间超过这个参时,则切换为非Barrier对齐
checkpointConfig.setAlignedCheckpointTimeout(Duration.ofSeconds(1000));
1.1.4.2 最终检查点

如果数据源是有界的,就可能出现部分Task已经处理完所有数据,变成finished状态,不继续工作。从 Flink 1.14 开始,这些finished状态的Task,也可以继续执行检查点。自 1.15 起默认启用此功能,并且可以通过功能标志禁用它(不推荐禁用):

Configuration config = new Configuration();
config.set(ExecutionCheckpointingOptions.ENABLE_CHECKPOINTS_AFTER_TASKS_FINISH, false);
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(config);

1.1.5 保存点(Savepoint)

除了检查点外,Flink还提供了另一个非常独特的镜像保存功能——保存点(savepoint)。

从名称就可以看出,这也是一个存盘的备份,它的原理和算法与检查点完全相同,只是多了一些额外的元数据。

1.1.5.1 保存点的用途

保存点与检查点最大的区别,就是触发的时机。检查点是由Flink自动管理的,定期创建,发生故障之后自动读取进行恢复,这是一个“自动存盘”的功能;而保存点不会自动创建,必须由用户明确地手动触发保存操作,所以就是“手动存盘”。

保存点可以当作一个强大的运维工具来使用。我们可以在需要的时候创建一个保存点,然后停止应用,做一些处理调整之后再从保存点重启。它适用的具体场景有:

  • 版本管理和归档存储
  • 更新Flink版本
  • 更新应用程序
  • 调整并行度
  • 暂停应用程序

需要注意的是,保存点能够在程序更改的时候依然兼容,前提是状态的拓扑结构和数据类型不变。我们知道保存点中状态都是以算子ID-状态名称这样的key-value组织起来的,算子ID可以在代码中直接调用SingleOutputStreamOperator的.uid()方法来进行指定:

DataStream<String> stream = env.addSource(new StatefulSource()).uid("source-id") // 指定算子Uid.map(new StatefulMapper()).uid("mapper-id").print();

对于没有设置ID的算子,Flink默认会自动进行设置,所以在重新启动应用后可能会导致ID不同而无法兼容以前的状态。所以为了方便后续的维护,强烈建议在程序中为每一个算子手动指定ID。

 1.1.5.2 使用保存点

保存点的使用非常简单,我们可以使用命令行工具来创建保存点,也可以从保存点恢复作业。

1.创建保存点

要在命令行中为运行的作业创建一个保存点镜像,只需要执行:

bin/flink savepoint :jobId [:targetDirectory]

这里jobId需要填充要做镜像保存的作业ID,目标路径targetDirectory可选,表示保存点存储的路径。

对于保存点的默认路径,可以通过配置文件flink-conf.yaml中的state.savepoints.dir项来设定:

state.savepoints.dir: hdfs:///flink/savepoints

 当然对于单独的作业,我们也可以在程序代码中通过执行环境来设置:

env.setDefaultSavepointDir("hdfs:///flink/savepoints");

 由于创建保存点一般都是希望更改环境之后重启,所以创建之后往往紧接着就是停掉作业的操作。除了对运行的作业创建保存点,我们也可以在停掉一个作业时直接创建保存点:

bin/flink stop --savepointPath [:targetDirectory] :jobId

2.从保存点重启应用

我们已经知道,提交启动一个Flink作业,使用的命令是flink run;现在要从保存点重启一个应用,其实本质是一样的:

bin/flink run -s :savepointPath [:runArgs]

这里只要增加一个-s参数,指定保存点的路径就可以了,其它启动时的参数还是完全一样的,如果是基于yarn的运行模式还需要加上 -yid application-id。当使用web UI进行作业提交时,可以填入的参数除了入口类、并行度和运行参数,还有一个“Savepoint Path”,这就是从保存点启动应用的配置。

1.1.5.3 使用保存点切换状态后端

在命令行重新恢复作业时,在命令行中添加以下命令以切换状态后端

-D state.backend=rocksdb

1.2  状态一致性

1.2.1 一致性的概念和级别

一致性其实就是结果的正确性,一般从数据丢失、数据重复来评估。

流式计算本身就是一个一个来的,所以正常处理的过程中结果肯定是正确的;但在发生故障、需要恢复状态进行回滚时就需要更多的保障机制了。我们通过检查点的保存来保证状态恢复后结果的正确,所以主要讨论的就是“状态的一致性”。

一般说来,状态一致性有三种级别:

  • 最多一次(At-Most-Once
  • 至少一次(At-Least-Once
  • 精确一次(Exactly-Once

1.2.2 端到端的状态一致性

在Flink中可以通过检查点机制来保障内部状态的一致性,但往往在实际应用中,Flink是从外部系统(Source)中读取数据,最终输出到外部系统(Sink)中,并不是Flink可以做到精确一次,整个程序在异常时就不会出现如何问题。例如外部数据源并不支持数据重放。这就要求我们不仅要考虑Flink内部数据的处理转换,还涉及到从外部数据源读取,以及写入外部持久化系统,整个应用处理流程从头到尾都应该是正确的。

所以完整的流处理应用,应该包括了数据源、流处理器和外部存储系统三个部分。这个完整应用的一致性,就叫做“端到端(end-to-end)的状态一致性”,它取决于三个组件中最弱的那一环。一般来说,能否达到at-least-once一致性级别,主要看数据源能够重放数据;而能否达到exactly-once级别,流处理器内部、数据源、外部存储都要有相应的保证机制。

1.3 端到端精确一次(End-To-End Exactly-Once 

实际应用中,最难做到、也最希望做到的一致性语义,无疑就是端到端(end-to-end)的“精确一次”。我们知道,对于Flink内部来说,检查点机制可以保证故障恢复后数据不丢(在能够重放的前提下),并且只处理一次,所以已经可以做到exactly-once的一致性语义了。

所以端到端一致性的关键点,就在于输入的数据源端和输出的外部存储端。

1.3.1 输入端保证 

输入端主要指的就是Flink读取的外部数据源。对于一些数据源来说,并不提供数据的缓冲或是持久化保存,数据被消费之后就彻底不存在了,例如socket文本流。对于这样的数据源,故障后我们即使通过检查点恢复之前的状态,可保存检查点之后到发生故障期间的数据已经不能重发了,这就会导致数据丢失。所以就只能保证at-most-once的一致性语义,相当于没有保证。

想要在故障恢复后不丢数据,外部数据源就必须拥有重放数据的能力。例如Fafka可以重置偏移量来达到数据重放,这也是实现端到端exactly-once的基本要求。

1.3.2 输出端保证

有了Flink的检查点机制,以及可重放数据的外部数据源,我们已经能做到at-least-once了。但是想要实现exactly-once却有更大的困难:数据有可能重复写入外部系统。

为了防止数据重复写入外部系统,保证exactly-once一致性的写入方式有两种:

  • 幂等写入
  • 事务写入

1.幂等(Idempotent)写入

所谓“幂等”操作,就是说一个操作可以重复执行很多次,但只导致一次结果更改。也就是说,后面再重复执行就不会对结果起作用了。

例如使用Redis中的键值存储、MySQL中的唯一约束等。

2.事务(Transactional)写入

事务有两种实现方式:预写日志(WAL)和两阶段提交(2PC)

1)预写日志(write-ahead-logWAL

我们发现,事务提交是需要外部存储系统支持事务的,否则没有办法真正实现写入的回撤。那对于一般不支持事务的存储系统,能够实现事务写入呢?

预写日志(WAL)就是一种非常简单的方式。具体步骤是:

①先把结果数据作为日志(log)状态保存起来

②进行检查点保存时,也会将这些结果数据一并做持久化存储

③在收到检查点完成的通知时,将所有结果一次性写入外部系统。

④在成功写入所有数据后,在内部再次确认(ack)相应的检查点,将确认信息也进行持久化保存。这才代表着检查点的真正完成。

我们会发现,这种方式类似于检查点完成时做一个批处理,一次性的写入会带来一些性能上的问题;而优点就是比较简单,由于数据提前在状态后端中做了缓存,所以无论什么外部存储系统,理论上都能用这种方式一批搞定。在Flink中DataStream API提供了一个模板类GenericWriteAheadSink,用来实现这种事务型的写入方式。

需要注意的是,预写日志这种一批写入的方式,有可能会写入失败;所以在执行写入动作之后,必须等待发送成功的返回确认消息。在成功写入所有数据后,在内部再次确认相应的检查点,这才代表着检查点的真正完成。这里需要将确认信息也进行持久化保存,在故障恢复时,只有存在对应的确认信息,才能保证这批数据已经写入,可以恢复到对应的检查点位置。

但这种“再次确认”的方式,也会有一些缺陷。如果我们的检查点已经成功保存、数据也成功地一批写入到了外部系统,但是最终保存确认信息时出现了故障,Flink最终还是会认为没有成功写入。于是发生故障时,不会使用这个检查点,而是需要回退到上一个;这样就会导致这批数据的重复写入。

2)两阶段提交(two-phase-commit2PC

前面提到的各种实现exactly-once的方式,多少都有点缺陷;而更好的方法就是两阶段提交(2PC)

顾名思义,它的想法是分成两个阶段:先做“预提交”,等检查点完成之后再正式提交。这种提交方式是真正基于事务的,它需要外部系统提供事务支持

具体的实现步骤为:

①当第一条数据到来时,或者收到检查点的分界线时,Sink任务都会启动一个事务。

②接下来接收到的所有数据,都通过这个事务写入外部系统;这时由于事务没有提交,所以数据尽管写入了外部系统,但是不可用,是“预提交”的状态。

③当Sink任务收到JobManager发来检查点完成的通知时,正式提交事务,写入的结果就真正可用了。

简单来说,就是第一条数据达到,或者分界线到达的时候开启事务,数据被写入外部系统(预提交)。检查点保存成功,则提交事务,此时数据真正可用;否则事务回滚,外部系统的数据也被回滚。

当事务中发生故障时,事务将会回滚,被写入外部系统的数据也应该被撤回。两阶段提交充分的利用了Flink的检查点机制,当分界线到来时,则开启一个事务;当检查点成功时,则提交该事务,并且该方法不用预写日志的批处理,减少了很多开销。

在我们使用Flink官方提供的连接器时,无需自己实现两阶段提交(P2P)。

不过两阶段提交虽然精巧,却对外部系统有很高的要求。这里将2PC对外部系统的要求列举如下:

  • 外部系统必须提供事务支持,或者Sink任务必须能够模拟外部系统上的事务。
  • 在检查点的间隔期间里,必须能够开启一个事务并接受数据写入。
  • 在收到检查点完成的通知之前,事务必须是“等待提交”的状态。在故障恢复的情况下,这可能需要一些时间。如果这个时候外部系统关闭事务(例如超时了),那么未提交的数据就会丢失。
  • Sink任务必须能够在进程失败后恢复事务(持久化事务至检查点)。
  • 提交事务必须是幂等操作。也就是说,事务的重复提交应该是无效的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/432993.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ASP.NET Core 7 Web 使用Session

ASP.NET Core 好像不能像20年前那样直接使用Session函数&#xff0c;我使用如下方法 1、在NuGet安装以下2个包 2、在Program.cs注册 //注册Session builder.Services.AddSession(options > {options.IdleTimeout TimeSpan.FromMinutes(60);options.Cookie.HttpOnly fals…

【七、centos要停止维护了,我选择Almalinux】

搜索镜像 https://developer.aliyun.com/mirror/?serviceTypemirror&tag%E7%B3%BB%E7%BB%9F&keywordalmalinux dvd是有界面操作的&#xff0c;minimal是最小化只有命里行 镜像下载地址 安装和centos基本一样的&#xff0c;操作命令也是一样的&#xff0c;有需要我…

第14次修改了可删除可持久保存的前端html备忘录:增加一个翻牌钟,修改背景主题:现代深色

第14次修改了可删除可持久保存的前端html备忘录&#xff1a;增加一个翻牌钟&#xff0c;修改背景主题&#xff1a;现代深色 备忘录代码 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta http-equiv"X…

DevExpress WinForms导航控件 - 交付更时尚、体验更好的业务应用(二)

DevExpress WinForms的Side Navigation&#xff08;侧边导航&#xff09;和Nav Panel&#xff08;导航面板&#xff09;可以帮助客户交付完全可模仿UI体验的业务解决方案&#xff0c;这些体验在当今流行的应用程序中都可找到。在上文中&#xff08;点击这里回顾>>&#x…

代码随想录算法训练营day3 | 链表 (1)

一、链表理论基础 链表是一种通过指针串联在一起的线性结构&#xff0c;每个节点由两部分组成&#xff1a;数据域和指针域&#xff08;指向下一个节点&#xff09;&#xff0c;最后一个节点的指针指向NULL&#xff08;空指针&#xff09;。 …

Servet的基础学习

Servet的基础学习 servet的简单介绍 Servlet 是运行在 Web 服务器或应用服务器上的程序&#xff0c;它是作为来自 Web 浏览器或其他 HTTP 客户端的请求和 HTTP 服务器上的数据库或应用程序之间的中间层。使用 Servlet&#xff0c;您可以收集来自网页表单的用户输入&#xff0…

《动手学深度学习(PyTorch版)》笔记4.5

注&#xff1a;书中对代码的讲解并不详细&#xff0c;本文对很多细节做了详细注释。另外&#xff0c;书上的源代码是在Jupyter Notebook上运行的&#xff0c;较为分散&#xff0c;本文将代码集中起来&#xff0c;并加以完善&#xff0c;全部用vscode在python 3.9.18下测试通过。…

【鸿蒙】大模型对话应用(一):大模型接口对接与调试

Demo介绍 本demo对接阿里云和百度的大模型API&#xff0c;实现一个简单的对话应用。 DecEco Studio版本&#xff1a;DevEco Studio 3.1.1 Release HarmonyOS API版本&#xff1a;API9 关键点&#xff1a;ArkTS、ArkUI、UIAbility、网络http请求、列表布局 官方接口文档 此…

【虚拟机数据恢复】异常断电导致虚拟机无法启动的数据恢复案例

虚拟机数据恢复环境&#xff1a; 某品牌R710服务器MD3200存储&#xff0c;上层是ESXI虚拟机和虚拟机文件&#xff0c;虚拟机中存放有SQL Server数据库。 虚拟机故障&#xff1a; 机房非正常断电导致虚拟机无法启动。服务器管理员检查后发现虚拟机配置文件丢失&#xff0c;所幸…

Emergent Abilities of Large Language Models 机翻mark

摘要 证明通过扩大语言模型可以可靠地提高性能和样本效率在广泛的下游任务。相反&#xff0c;本文讨论了我们称之为大型语言模型的新兴能力的一种不可预测的现象。我们认为如果一个能力不存在于较小的模型中&#xff0c;但在较大的模型中存在&#xff0c;则该能力就是新兴的。…

鸿蒙系统的APP开发

鸿蒙系统&#xff08;HarmonyOS&#xff09;是由华为公司开发的一款分布式操作系统。它被设计用于在各种设备上实现无缝的、统一的用户体验&#xff0c;包括智能手机、平板电脑、智能电视、智能穿戴等设备。鸿蒙系统的核心理念是支持多终端协同工作&#xff0c;使应用能够更灵活…

[UI5 常用控件] 03.Icon, Avatar,Image

文章目录 前言1. Icon2. Avatar2.1 displayShape2.2 initials2.3 backgroundColor2.4 Size2.5 fallbackIcon2.6 badgeIcon2.7 badgeValueState2.8 active 3. Image 前言 本章节记录常用控件Title,Link,Label。 其路径分别是&#xff1a; sap.m.Iconsap.m.Avatarsap.m.Image 1…