Doris 与 Clickhouse 对比(一)

1. 常用引擎

☕️ Doris 表数据模型

  1. duplicate key

🎬 场景:适用于数据无需提前聚合的分析业务。

⚠️ 注意点:只指定排序列,相同的行并不会合并。

  1. unique key

🎬 场景:适用于有更新需求的业务。

⚠️ 注意点:key相同时,新记录覆盖旧记录。

  1. aggregate key

🎬 场景:可以提前聚合数据,适合报表和多维度业务。

⚠️ 注意点:

将会进行聚合操作,目前支持sum,min,max,replace 等

(1)sum:求和,多行的 value 进行累加。

(2)replace:替代,下一批数据中的 value 会替换之前导入过的行中的 value。

(3)max:保留最大值。

(4)min:保留最小值。

欢迎关注,一起学习

☕️ Clickhouse 表引擎

  1. *MergeTree

🎬 场景:

(1)支持索引和分区。

(2)支持生命周期TTL(列级 和表级)。

⚠️ 注意点:

(1)主键并不唯一,会建索引。

(2)order by 是必须的,主键、分区非必须。

  1. ReplacingMergeTree

🎬 场景:去重功能。

⚠️ 注意点:

(1)数据的去重只会在合并的过程中出现。合并会在未知的时间在后台进行,所以你无法预先作出计划。有一些数据可能仍未被处理。

(2)如果表经过了分区,去重只会在分区内部进行去重,不能执行跨分区的去重。

(3)认定重复的数据保留,版本字段值最大的如果版本字段相同则按插入顺序保留最后一次。

  1. SummingMergeTree

🎬 场景:对于不查询明细,只关心以维度进行汇总聚合结果的场景。

⚠️ 注意点:

(1)以 order by 的列为准,作为维度列,其他的列按插入顺序保留第一行。

(2)不在一个分区的数据不会被聚合。

2. Join 方式

  • 查询速度和并发能力,单表性能ClickHouse更好。
  • 多表Join Doris优势更明显,特别是复杂Join和大表Join大表的场景。

首先了解下向量化引擎:核心思想就是一次处理一批数据,从而大大提高数据计算的速度,例如对于一列数据,我们通过向量化技术可以一次处理1000行数据,一次将这1000行数据做比较或者做加减运算,这种处理方式在列存数据库上尤其有效,因为列存数据库通常一列一列的将数据读取处理,在内存中都是以Array的形式存储,这种方式更容易使用向量化方式做计算。

☕️ Doris Join方式

  1. Broadcast Join

🎬 说明:默认Join,将小表加载到内存中,形成一张Hash内存表,然后将Hash表广播到大表所在的各个节点。

⚠️ 注意点:

如果小表数据过大,Doris将自动转换为Shuffle join。

  1. Shuffle Join

🎬 说明:小表数据无法放入内存则进行shuffle join。

⚠️ 注意点:

每个数据扫描节点将数据扫出来之后进行Partition 分区,然后根据 Partition 分区的结果分别把左右表的数据发送到对应的 Join 计算节点上。

  1. Bucket Shuffle Join

🎬 说明:

利用建表时候分桶的特性,当join的时候,join的条件和左表的分桶字段一样的时候,将右表按照左表分桶的规则进行shuffle操作,使右表中需要join的数据落在左表中需要join数据的BE节点上的join。

⚠️ 注意点:

(1)Join 条件为等值的场景才有效。

(2)需要左表的分桶列的类型与右表等值 join 列的类型需要保持一致。

(3)只作用于 Doris 原生的表,其他表比如,ES,MYSQL无效。

  1. Colocation Join

🎬 说明:

是将一组拥有相同 CGS 的 Table 组成一个 CG。保证这些 Table 对应的数据分片会落在同一个 BE 节点上。使得当 CG 内的表进行分桶列上的 Join 操作时,可以通过直接进行本地数据 Join。

两个概念:

(1)Colocation Group(CG):位置协同组。

(2)Colocation Group Schema (CGS): CG 中的 Table的元数据信息,比如:分桶列类型,分桶数以及分区的副本数等等信息。

⚠️ 注意点:

(1)建表时两张表的分桶列的类型和数量需要一致,保证多张表的数据分片能够一一对应分布控制。

(2)同一个 CG 内所有表的所有分区的副本数必须一致。如果不一致,可能出现某一个tablet 的某一个副本,在同一个 BE 上没有其他对应的表分片的副本。

(3)同一个 CG 内的表,分区的个数、范围以及分区列的类型不要求一致。

☕️ Clickhouse Join方式

  1. 普通 Join

🎬 步骤:假设集群有4个节点,2个分区,2个副本,其中data1、data2 节点为一个分片 shard1,data3、data4 为一个分片 shard2。执行的SQL语句如下:

SELECT l_.a, r_.aFROM left_all as l JOIN right_all as r 
on l_.a = r_.a

(1)Client发送data1节点上面的sql,准备执行

(2)data1节点会把自己本机表分片shard1数据left_local准备好,也即下面sql

当然,同理,data3也会把自己的left_local数据准备好

SELECT l_.a, r_.a FROM left_local as l JOIN right_all as r 
on l_.a = r_.a

(3)当data1与data3 要开始执行第二步中 join的右表,也是一个分布式表。这个时候,data1需要shard2中的右边表数据到本地,同理data3需要shard1中的右边数据到本地。这样这两个节点都有一份全量的right_all_local。

(4)节点data1,data3 left_local数据与right_all_local做计算。

SELECT l_.a, r_.a FROM left_local as l JOIN right_all_local as r 
on l_.a = r_.a

(5)data3执行完成以后,把结果发送到data1。

(6)data1收到数据,然后和自己计算数据做汇总,最后把结果给Client。

  1. Global Join

🎬 步骤:

还与普通Join不同的是,比如:

(1)data3节点将右表数据查询出来在data1上汇总为right_all_local。

(2)然后data1把right_all_local发送到data3上执行。

(3)data3的本地left_local数据与right_all_local计算好,发送到data1。

(4)data1收到数据,然后和自己计算数据做汇总,最后把结果给Client。

⚠️ 注意点:

(1)如果分片数为n,Global Join 右表本地表查询次数为n,而普通 Join 右表查询次数为n*n。这样可以减少读数据次数。

(2)数据在节点之间传播,占用部分网络流量。如果数据量较大,同样会带来性能损失。

3. 数据划分

☕️ Doris 数据划分

🎬 基本组成:

(1)Row & Column:一张表包括行(Row)和列(Column)。

(2)Tablet:Doris 的存储引擎中,用户数据被水平划分为若干个数据分片(Tablet,也称作数据分桶Bucket)。每个 Tablet 包含若干数据行。各个 Tablet 之间的数据没有交集,并且在物理上是独立存储的。

(3)Partition:多个 Tablet 在逻辑上归属于不同的分区(Partition)。一个 Tablet 只属于一个 Partition。而一个 Partition 包含若干个 Tablet。

🎬 数据划分:

Doris 支持两层的数据划分。第一层是 Partition,支持 Range 和 List 的划分方式。第二层是 Bucket(Tablet),支持 Hash 和 Random 的划分方式。

⚠️ 官方给出的注意点:

(1)一个表的 Tablet 总数量等于 (Partition num * Bucket num),在不考虑扩容的情况下,推荐略多于整个集群的磁盘数量。

(2)单个 Tablet 的数据量建议在 1G - 10G 的范围内。

(3)一个 Partition 的 Bucket 数量一旦指定,不可更改。所以在确定 Bucket 数量时,需要预先考虑集群扩容的情况。比如当前只有 3 台 host,每台 host 有 1 块盘。如果 Bucket 的数量只设置为 3 或更小,那么后期即使再增加机器,也不能提高并发度。

(4)官方举一些例子:假设在有10台BE,每台BE一块磁盘的情况下。如果一个表总大小为 500MB,则可以考虑4-8个分片。5GB:8-16个分片。50GB:32个分片。500GB:建议分区,每个分区大小在 50GB 左右,每个分区16-32个分片。5TB:建议分区,每个分区大小在 50GB 左右,每个分区16-32个分片。

☕️ Clickhouse 数据划分

🎬 数据分片

分片策略:

(1)random随机分片:写入数据会被随机分发到分布式集群中的某个节点上。

(2) constant固定分片:写入数据会被分发到固定一个节点上。

(3) column value分片:按照某一列的值进行hash分片。

(4) 自定义表达式分片:根据表达式的值进行hash分片。

🎬 数据分区

分区设计:

(1)不指定分区键,则数据默认不分区,所有数据写到一个默认分区a里面。

(2)如果分区键取值属于整型,则直接按照该整型的字符形式输出作为分区ID的取值。

(3)如果分区键取值属于日期类型,或者是能够转换为YYYYMMDD日期格式的整型,则按照分区表达式逻辑格式化后作为分区ID的取值。

(4)如果分区键取值既不属于整型或日期类型,则通过128位Hash算法取其Hash值作为分区ID的取值。

(5)分区键也可以是表达式的tuple元组。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/433126.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RustDesk私有化部署,自建远程桌面搭建教程

以linux操作系统为例: 解压安装 # 使用wget进行下载1.1.8-2版本(最新版本可以看上述发布地址) wget https://github.com/rustdesk/rustdesk-server/releases/download/1.1.8-2/rustdesk-server-linux-amd64.zip # 使用unzip解压 unzip rust…

Debezium发布历史90

原文地址: https://debezium.io/blog/2020/04/09/using-debezium-with-apicurio-api-schema-registry/ 欢迎关注留言,我是收集整理小能手,工具翻译,仅供参考,笔芯笔芯. 将 Debezium 与 A​​picurio API 和架构注册表…

C++面试:散列表

目录 1. 散列表的基本概念 散列表的定义 散列函数 哈希冲突 2. 处理冲突的方法 链地址法(Separate Chaining) 开放地址法 再散列 3. 散列表的性能分析 1. 平均查找长度(ASL) 2. 负载因子(Load Factor&#…

java的==运算符和equals详解

①chatgpt的解释 在Java中,和equals都是用于比较两个对象的操作符,但它们的行为和用途有所不同。 操作符: 对于基本数据类型,比较的是它们的值是否相等。例如,int a 5; int b 5; System.out.println(a b); // 输出t…

TensorFlow2实战-系列教程1:回归问题预测

🧡💛💚TensorFlow2实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Jupyter Notebook中进行 本篇文章配套的代码资源已经上传 1、环境测试 import tensorflow as tf import numpy as np tf.__version__打印结果 ‘…

Flutter环境搭建【win10虚拟机】+夜神模拟器【主机】

Flutter环境搭建 0 Android Studio 与 VS Code 资源消耗对比1 系统配置要求2 Flutter SDK2.1 获取 Flutter SDK2.2 解压2.3 更新 path 环境变量Dart SDK 要兼容 Flutter SDK双击 flutter_console.bat 输入 flutter doctor 检测环境 3 VS code 与插件3.1 安装 VS code3.2 安装 f…

浅谈WPF之样式与资源

WPF通过样式,不仅可以方便的设置控件元素的展示方式,给用户呈现多样化的体验,还简化配置,避免重复设置元素的属性,以达到节约成本,提高工作效率的目的,样式也是资源的一种表现形式。本文以一个简…

Hadoop-MapReduce-MRAppMaster启动篇

一、源码下载 下面是hadoop官方源码下载地址&#xff0c;我下载的是hadoop-3.2.4&#xff0c;那就一起来看下吧 Index of /dist/hadoop/core 二、上下文 在上一篇<Hadoop-MapReduce-源码跟读-客户端篇>中已经将到&#xff1a;作业提交到ResourceManager&#xff0c;那…

java web 职位推荐系系统Myeclipse开发mysql数据库协同过滤算法java编程计算机网页项目

一、源码特点 java Web职位推荐系统是一套完善的java web信息管理系统 &#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.0…

podman+centos和docker+alpine中作性能对比遇到的问题及解决

1.dockeralpine中遇到这个问题 这是由于缺少相关的配置和依赖造成的 通过以下命令在alpine中安装相关配置 apk add --no-cache build-base cairo-dev cairo cairo-tools jpeg-dev zlib-dev freetype-dev lcms2-dev openjpeg-dev tiff-dev tk-dev tcl-dev 2.alpine中python找…

C++ 之LeetCode刷题记录(十九)

&#x1f604;&#x1f60a;&#x1f606;&#x1f603;&#x1f604;&#x1f60a;&#x1f606;&#x1f603; 开始cpp刷题之旅。 依旧是追求耗时0s的一天。 108. 将有序数组转换为二叉搜索树 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你…

滑木块H5小游戏

欢迎来到程序小院 滑木块 玩法&#xff1a;点击木块横着的只能左右移动&#xff0c;竖着的只能上下移动&#xff0c; 移动到箭头的位置即过关&#xff0c;不同关卡不同的木块摆放&#xff0c;快去滑木块吧^^。开始游戏https://www.ormcc.com/play/gameStart/260 html <can…