详解矩阵的LDU分解

目录

一. 矩阵分解

二. 解方程

三. 例题说明

四. 矩阵的LDU分解

五. 矩阵三角分解的唯一性


一. 矩阵分解

其实我们可以把一个线性系统(Linear System)看成两个三角系统(Triangular Systems),本文章将解释为什么可以这么看待解线性方程组,以及这样理解到底有什么好处。我们知道高斯消元法其实跟矩阵的三角分解有关,如下:

A=LU

其中,A为任意方阵,L为下三角矩阵且对角线处元素均为1,U为上三角矩阵。注意此处的上三角矩阵U的对角线处元素不一定为1.

利用矩阵L和U,可以直接求解Ax=b,该方程也被称之为线性系统。借助矩阵L,也就是正向消元(forward elimination),可以把b变成c。

借助矩阵U,也就是逆向替换(back substitution),可以从c来解x。那么对于任意解方程,我们可以将其标准化为两步,这两部就不需要直接利用A,如下:

观察第二个方程,两边同时乘以矩阵L,可得:

LUx=Lc

不要忘记A=LU,且Lc=b,也就可得:

Ax=b

说明以上变换是有效的。该方程的思路从理论上是行得通的。

我们都知道三角不等式是很容易解的,相关的elimination code也很容易设计。至于怎么解,我们接着往下看。

二. 解方程

根据以上讨论,我们可以把解方程分成两步。

(1)分解,factor

将矩阵A分解,找到对应的矩阵L与U。

(2)解方程,solve

综合利用L,U和b,确定最终的结果x。

从计算复杂度性的角度来讲,解三角系统的步骤只需要n^2/2步,因为三角矩阵就只有n^2/2个元素,该复杂度性应该比较好理解。

总共有两个三角系统,无论是上三角还是下三角矩阵,复杂性是一样的,只不过解的顺序不同而已。也就是一共n^2步操作即可求解两个三角系统。如果有印象的小伙伴会发现,如果直接从A入手的话,解方程复杂度为:

\frac{n^3}{3}

这也就是通常我们所说的,在不外加任何优化算法的前提下,解线性方程组的计算复杂度为:

O(n^3)

三. 例题说明

假定有一个矩阵A,需要解的方程中b=(1,1,1,1),详细的方程如下:

按照以上讨论,我们已知矩阵A和向量b,目标是求解未知向量x。我们的思路是先将其分成Lc=b,接着求解Ux=c。

首先第一步列方程可得:

很容易解该方程,可得对应的c为:

接着列出第二个方程,可得:

求解该方程可得x为:

在这个例子中,系数矩阵中的元素只有1,-1和0,所以解起来会更加简单,之前解方程的复杂度为n^2,那么现在复杂度则只有2n。比如先看第一个方程,Lc=b,我们首先解c1,接着解c2,以此类推,所以这个过程也被称之为正向(forward)求解。

接着解第二个方程Ux=c,是首先解x4,接着解x3,这也就是所谓的逆向求解(backward)。

四. 矩阵的LDU分解

在以上的分析中,其实有一个小问题,我们发现矩阵L和U地位不是均等的。换句话说,矩阵L的对角线处元素均为1,但是矩阵U并不满足此条件。矩阵U对角线处的值均为主元(pivots)。

那么我们能不能让矩阵U的对角线处元素也为1呢?

直接把矩阵U初以主元矩阵D,也就是继续做如下分解:

注意以上是以矩阵每行来理解的,也就是每行均除以对应的di,每个元素都要相应缩减。

当然在我们刚才举的例子中,该矩阵的主元di=1,也就是矩阵D是单位阵:

D=I

但这只是其中的一个例子,在刚才的例题中LU分解与LDU分解的结果是一样的,但仅仅是个例。

一般来讲,矩阵的LU分解与LDU分解往往是不一样的,当然有些地方也会将其称之为LDV分解,只是换个符号而已,本质是一样的。

结合以上,我们可以总结矩阵完整的三角分解(triangular factorization),写做:

A=LDU

该种分解在网路安全等领域很有用,其中矩阵L与U的对角线处元素均为1,D为对角阵也就是矩阵的主元

五. 矩阵三角分解的唯一性

综合以上矩阵的三角分解可以写做LDU或者写做LDV,矩阵U或者叫V的对角线处元素均为1,相当于每行均被主元矩阵D相除。这样的话,矩阵L和U的地位就是一样的。我们来看一个例子。

首先可以将矩阵A进行LU分解,也就是可以得到:

接着可以继续将其LDU分解,可以得到:

很明显可以验证发现矩阵L和U的对角线处元素均为1,矩阵D包含主元1和-2。无论是哪种分解,矩阵L是保持不变的。

很多时候,当我们解释高斯消元法时,都有一定的顺序,但其实这些顺序并不是那么重要,比如就可以利用“Crout algorithm”进行验证。

但是矩阵的LDU分解是唯一的,换句话说:

假定A可以分解成L1D1U1,也就是满足:

A=L_1D_1U_1

同理A可以分解成L2D2U2,也就是满足:

A=L_2D_2U_2

当然以上矩阵L和U均为相应的三角矩阵,且矩阵D        的对角线处元素均不为0,那么可得L,D,U都是对应相等的,也就是:

L_1=L_2,D_1=D_2,U_1=U_2

以上讨论告诉我们无论是LU分解,还是LDU分解,只要矩阵A确定了,那么分解也就确定了。

可以把这种说法,看成一个定理,该定理的证明需要利用逆矩阵,形式比较直接,此处就不啰嗦证明了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/433401.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Mybatis,Vue,ajax,ElementUI实现的增删改查

下面是项目获取连接: 链接:https://pan.baidu.com/s/158eyyhg2X1bQtMEVT1ut1Q?pwd1234 提取码:1234 界面如下:

外卖跑腿系统开发:构建高效、安全的服务平台

在当今快节奏的生活中,外卖跑腿系统的开发已成为技术领域的一个重要课题。本文将介绍如何使用一些常见的编程语言和技术框架,构建一个高效、安全的外卖跑腿系统。 1. 技术选择 在开始开发之前,我们需要选择适合的技术栈。常用的技术包括&a…

如何看待程序员抄代码还拿着高薪这一说法?

程序员的工资构成:会复制粘贴值1块,知道去哪复制值5K,知道粘贴在哪值10K,粘贴完了能跑起来值15 有人说:能带领一伙人复制粘贴值20k。 有人说:能写一个自动复制粘贴的系统值30k。 有人纳闷问到&#xff1a…

pinia实现todos

store/todos.js //导入defineStore import {defineStore} from pinia const userTodosStoredefineStore(todos,{ state:()>({// list:[// {id:1,name:吃饭,done:false},// {id:2,name:睡觉,done:true},// {id:3,name:打豆豆,done:false}// ],list:JSON.parse(l…

OpenAI为ChatGPT推出多语言功能Alpha版灰度测试;微软Copilot网页端和App更新了GPTs和购买Copilot Pro功能

OpenAI为ChatGPT推出多语言功能灰度测试。 微软Copilot网页端和App更新了GPTs和购买Copilot Pro功能 关于ChatGPT的详细介绍请看我这篇文章;关于Copilot Pro的详细介绍请看我这篇文章。 OpenAI推出多语言功能灰度测试 1月26日,OpenAI对其广受欢迎的C…

Cesium工具应用

文章目录 0.引言1.场景截图2.卷帘对比3.反选遮罩4.鹰眼视图5.指南针与比例尺6.坐标测量7.距离测量8.面积测量9.热力图10.视频投影11.日照分析12.淹没分析13.通视分析14.可视域分析15.缓冲区分析16.地形开挖17.要素聚合18.开启地下模式19.开启等高线20.坡度坡向21.填挖方量计算2…

对话泛能网程路:能源产业互联网,行至中程

泛能网的能源产业互联网的标杆价值还不仅于此。其在产业互联之外,也更大的特殊性在于其也更在成为整个碳市场的“辅助运营商”,包括电力、碳等一系列被泛能网帮助企业改造和沉淀的要素资产,都在构成着碳交易市场的未来底层。 这恰是产业互联…

解决:‘chromedriver’ executable needs to be in PATH

解决:chromedriver’ executable needs to be in PATH 文章目录 解决:chromedriver’ executable needs to be in PATH背景报错问题报错翻译报错位置代码报错原因解决方法方法一:检查python安装路径有没有添加到环境变量里面方法二&#xff1…

应急响应-Linux-日志分析

日志概述 Linux系统中的日志一般存放在目录"/var/log"下,具体的日志功能如下。 /var/log/wtmp:记录登录进入、退出、数据交换、关机和重启,即last。/var/log/cron:记录与定时任务相关的日志信息。/var/log/messages&am…

Kafka3学习笔记

文章目录 一、Kafka概述和入门1、Kafka概述1.1 定义1.2 消息队列1.3 Kafka 基础架构 2、Kafka 快速入门2.1 安装部署2.2 集群启停脚本 3、Kafka 命令行操作3.1 Topic命令行操作3.2 生产者命令行操作3.3 消费者命令行操作 二、Kafka核心概念详解1、Kafka 生产者1.1 生产者消息发…

C# 使用 SapNwRfc 调用SAP RFC

好久没写过相关代码,今天又来贡献一篇 C# 使用 SapNwRfc 调用SAP RFC。用VS2022的WINFORM应用程序,使用NuGet中的SapNwRfc类库,call SAP系统中的RFC,传入7个参数,得到RFC返回的2张表的数据。 一、VS2022中新建WINFORM…

ppt背景图片怎么设置?让你的演示更加出彩!

PowerPoint是一款广泛应用于演示文稿制作的软件,而背景图片是演示文稿中不可或缺的一部分。一个好的背景图片能够提升演示文稿的整体效果,使观众更加关注你的演示内容。可是ppt背景图片怎么设置呢?本文将介绍ppt背景图片设置的三个方法&#…