通俗易懂理解小波池化以及WaveCNet网络模型

重要说明:本文从网上资料整理而来,仅记录博主学习相关知识点的过程,侵删。

一、参考资料

github代码:WaveCNet

小波变换和曲波变换用于池化层

通俗易懂理解小波变换(Wavelet Transform)

二、相关介绍

关于小波变换的详细介绍,请参考另一篇博客:通俗易懂理解小波变换(Wavelet Transform)

1. DWT和IDWT原理

小波变换是可逆的,小波变换可以通过小波分解和重构,恢复原始图像详细。

在这里插入图片描述

对于输入图像 I I I,进行两级小波变换,可以得到:
L L 2 , ( L H 2 , H L 2 , H H 2 ) , ( L H 1 , H L 1 , H H 1 ) = D W T ( D W T ( I ) ) LL2, (LH2, HL2, HH2), (LH1, HL1, HH1) = DWT(DWT(I)) LL2,(LH2,HL2,HH2),(LH1,HL1,HH1)=DWT(DWT(I))
舍弃最高频的子带LH1, HL1和HH1,保留相对低频的LL2, (LH2, HL2, HH2)。最后对保留的二级小波系数进行逆变换,重构图像:
I ′ = I D W T ( L L 2 , L H 2 , H L 2 , H H 2 ) I^{\prime}= IDWT(LL2, LH2, HL2, HH2) I=IDWT(LL2,LH2,HL2,HH2)

三、小波池化

Wavelet Pooling小波池化的思考
小波变换和曲波变换用于池化层

以文献[1-2]为例,详细介绍小波池化。

1. 引言

池化是舍弃信息来实现正则化的效果。传统的 Max PoolingAverage Pooling都有一些局限性。Max pooling 是一个有效的池化方法,但可能过于简单;Average Pooling会产生模糊。当主要的特征幅度值低于不重要的特征时,重要的特征在max pooling中就丢失了。而Average Pooling接收了幅值大的特征和幅值小的特征,会稀释幅值大的特征。具体如下图所示:

在这里插入图片描述

并且,Average Pooling或Max Pooling是不可逆的。一旦进行平均池化或者最大池化,新的特征空间无法保留原先特征空间的所有信息。而小波池化是可逆的,能恢复所有的原始特征。

2. DWT与IDWT网络层

对于DWT和IDWT网络层的关键在于数据的前向传播(forward propagations)和后向传播(backward propagations)。本章节以1D正交小波和1D数据为例,分析DWT和IDWT。同理,可以推广到其他小波和2D/3D数据,只有细微的变化。

2.1 前向传播(Forward propagation)

对于1D数据 x = { s j } j ∈ Z \mathbf{x}=\{s_{j}\}_{j\in\mathbb{Z}} x={sj}jZ,通过DWT的低通滤波(low-pass filters)分解为低频成分 x l o w = { x k ( l o w ) } k ∈ Z \mathbf{x}_\mathrm{low}=\{\mathbf x_{k}^{(\mathrm{low})}\}_{k\in\mathbb{Z}} xlow={xk(low)}kZ,通过DWT的高通滤波(high-pass filters)分解为高频成分 x h i g h = { x k ( h i g h ) } k ∈ Z \mathbf{x}_\mathrm{high}=\{\mathbf x_{k}^{(\mathrm{high})}\}_{k\in\mathbb{Z}} xhigh={xk(high)}kZ
{ x k ( l o w ) = ∑ j l j − 2 k x j , x k ( h i g h ) = ∑ j h j − 2 k x j , ( 1 ) \left.\left\{\begin{array}{c}\mathbf x_{k}^{(\mathrm{low})}=\sum_jl_{j-2k}x_j,\\\mathbf x_{k}^{(\mathrm{high})}=\sum_jh_{j-2k}x_j,\end{array}\right.\right. \quad (1) {xk(low)=jlj2kxj,xk(high)=jhj2kxj,(1)
其中, l = { l k } k ∈ Z \boldsymbol{l}=\{l_{k}\}_{k\in\mathbb{Z}} l={lk}kZ h = { h k } k ∈ Z \boldsymbol{h}=\{h_{k}\}_{k\in\mathbb{Z}} h={hk}kZ 分别表示正交小波(orthogonal wavelet)的低通滤波(low-pass filters)和高通滤波(high-pass filters)。由 公式 ( 1 ) 公式(1) 公式(1) 可知,DWT包含两个过程:过滤下采样

IDWT使用 s l o w , s h i g h \mathbf{s}_\mathrm{low},\mathbf{s}_\mathrm{high} slow,shigh 重构 s \mathbf{s} s,公式表达如下:
x j = ∑ k ( l j − 2 k x k ( l o w ) + h j − 2 k x k ( h i g h ) ) . ( 2 ) x_j=\sum_k\left(l_{j-2k}\mathbf x_{k}^{(\mathrm{low})}+h_{j-2k}\mathbf x_{k}^{(\mathrm{high})}\right). \quad (2) xj=k(lj2kxk(low)+hj2kxk(high)).(2)
用矩阵和向量表示, 公式 ( 1 ) 公式(1) 公式(1) 公式 ( 2 ) 公式(2) 公式(2) 可以重写为:
x l o w = L x , x h i g h = H x , ( 3 ) x = L T x l o w + H T x h i g h , ( 4 ) \begin{aligned}\mathbf{x}_\mathrm{low}&=\mathbf{L}\mathbf{x},\quad\mathbf{x}_\mathrm{high}=\mathbf{H}\mathbf{x},\quad&(3)\\\mathbf{x}&=\mathbf{L}^T\mathbf{x}_\mathrm{low}+\mathbf{H}^T\mathbf{x}_\mathrm{high},\quad&(4)\end{aligned} xlowx=Lx,xhigh=Hx,=LTxlow+HTxhigh,(3)(4)
其中
L = ( ⋯ ⋯ ⋯ ⋯ l − 1 l 0 l 1 ⋯ ⋯ l − 1 l 0 l 1 ⋯ ⋯ ⋯ ) , ( 5 ) \left.\mathbf{L}=\left(\begin{array}{ccccccc}\cdots&\cdots&\cdots&&&&\\\cdots&l_{-1}&l_0&l_1&\cdots&&\\&\cdots&l_{-1}&l_0&l_1&\cdots\\&&&&\cdots&\cdots\end{array}\right.\right),\quad(5) L= l1l0l1l1l0l1 ,(5)

H = ( ⋯ ⋯ ⋯ ⋯ h − 1 h 0 h 1 ⋯ ⋯ h − 1 h 0 h 1 ⋯ ⋯ ⋯ ) . ( 6 ) \left.\mathbf{H}=\left(\begin{array}{ccccccc}\cdots&\cdots&\cdots&&&\\\cdots&h_{-1}&h_0&h_1&\cdots&\\&&\cdots&h_{-1}&h_0&h_1&\cdots\\&&&&\cdots&\cdots\end{array}\right.\right).(6) H= h1h0h1h1h0h1 .(6)

对于2D数据 X \mathbf{X} X,2D DWT通常对其每一行(row) 和每一列(column)进行1D DWT操作,也就是:
X l l = L X L T , ( 7 ) X l h = H X L T , ( 8 ) X h l = L X H T , ( 9 ) X h h = H X H T , ( 10 ) \begin{gathered} \mathbf{X}_{ll} =\mathbf{L}\mathbf{X}\mathbf{L}^{T}, \left(7\right) \\ \mathbf{X}_{lh} =\mathbf{HXL}^{T}, \left(8\right) \\ \mathbf{X}_{hl} =\mathbf{LXH}^{T}, \left(9\right) \\ \mathbf{X}_{hh} =\mathbf{HXH}^{T}, \left(10\right) \end{gathered} Xll=LXLT,(7)Xlh=HXLT,(8)Xhl=LXHT,(9)Xhh=HXHT,(10)
对于2D IDWT操作,公式表达如下:
X = L T X l l L + H T X l h L + L T X h l H + H T X h h H . ( 11 ) \mathbf{X}=\mathbf{L}^T\mathbf{X}_{ll}\mathbf{L}+\mathbf{H}^T\mathbf{X}_{lh}\mathbf{L}+\mathbf{L}^T\mathbf{X}_{hl}\mathbf{H}+\mathbf{H}^T\mathbf{X}_{hh}\mathbf{H}.\quad(11) X=LTXllL+HTXlhL+LTXhlH+HTXhhH.(11)

在 2D DWT的输出中, X l l \mathbf{X}_{ll} Xll 是输入 X \mathbf{X} X的低频成分,代表主要的信息,包括目标的基本结构;对应的 X l h , X h l , X h h \mathbf{X}_{lh}, \mathbf{X}_{hl}, \mathbf{X}_{hh} Xlh,Xhl,Xhh 是三个高频成分,其保存了输入 X \mathbf{X} X水平(horizontal)、垂直(vertical)、对角线(diagonal)的细节信息。

2.2 反向传播(Backward propagation)

公式 ( 3 ) − ( 4 ) (3)-(4) (3)(4) 表示1D DWT和IDWT的前向传播。1D DWT的反向传播与梯度 ∂ x l o w ∂ x \frac{\partial \mathbf{x}_\mathrm{low}}{\partial \mathbf{x}} xxlow ∂ x h i g h ∂ x \frac{\partial \mathbf{x}_\mathrm{high}}{\partial \mathbf{x}} xxhigh密切相关,可以从公式(3) 中推导出:

∂ x l o w ∂ x = L T , ∂ x h i g h ∂ x = H T . ( 12 ) \frac{\partial \mathbf{x}_\mathrm{low}}{\partial \mathbf{x}} = \mathbf{L}^T, \frac{\partial \mathbf{x}_\mathrm{high}}{\partial \mathbf{x}} = \mathbf{H}^T.\quad(12) xxlow=LT,xxhigh=HT.(12)

类似的,1D IDWT的反向传播与梯度 ∂ x l o w ∂ x \frac{\partial \mathbf{x}_\mathrm{low}}{\partial \mathbf{x}} xxlow ∂ x h i g h ∂ x \frac{\partial \mathbf{x}_\mathrm{high}}{\partial \mathbf{x}} xxhigh密切相关,可以从公式(4) 中推导出:

∂ x ∂ x l o w = L , ∂ x ∂ x h i g h = H . ( 13 ) \frac{\partial \mathbf{x}}{\partial \mathbf{x}_\mathrm{low}} = \mathbf{L}, \frac{\partial \mathbf{x}}{\partial \mathbf{x}_\mathrm{high}} = \mathbf{H}.\quad(13) xlowx=L,xhighx=H.(13)

对于2D DWT的反向传播可以通过梯度 ∂ X l l ∂ X ( G ) \frac{\partial X_{ll}}{\partial X}(G) XXll(G) ∂ X l h ∂ X ( G ) \frac{\partial X_{lh}}{\partial X}(G) XXlh(G) ∂ X h l ∂ X ( G ) \frac{\partial X_{hl}}{\partial X}(G) XXhl(G) ∂ X h h ∂ X ( G ) \frac{\partial X_{hh}}{\partial X}(G) XXhh(G)实现,公式表达如下:
∂ X l l ∂ X ( G ) = L T G L , ( 14 ) ∂ X l h ∂ X ( G ) = H T G L , ( 15 ) ∂ X h l ∂ X ( G ) = L T G H , ( 16 ) ∂ X h h ∂ X ( G ) = H T G H , ( 17 ) \begin{gathered} \frac{\partial X_{ll}}{\partial X}(G) ={L}^{T}G{L}, \quad (14) \\ \frac{\partial\boldsymbol{X}_{lh}}{\partial\boldsymbol{X}}(G) ={H}^{T}G{L}, \quad (15) \\ \frac{\partial\boldsymbol{X}_{hl}}{\partial\boldsymbol{X}}(G) ={L}^{T}G{H}, \quad (16) \\ \frac{\partial X_{hh}}{\partial X}(G) ={H}^{T}G{H}, \quad (17) \end{gathered} XXll(G)=LTGL,(14)XXlh(G)=HTGL,(15)XXhl(G)=LTGH,(16)XXhh(G)=HTGH,(17)
其中, G G G 是2D DWT之后的层的反向传播输出。

类似的,对于2D IDWT的反向传播可以通过 ∂ X ∂ X l l ( G ) \frac{\partial X}{\partial X_{ll}}(G) XllX(G) ∂ X ∂ X l h ( G ) \frac{\partial X}{\partial X_{lh}}(G) XlhX(G) ∂ X ∂ X h l ( G ) \frac{\partial X}{\partial X_{hl}}(G) XhlX(G) ∂ X ∂ X h h ( G ) \frac{\partial X}{\partial X_{hh}}(G) XhhX(G)实现,公式表达如下:
∂ X ∂ X l l ( G ) = L G L T , ( 18 ) ∂ X ∂ X l h ( G ) = H G L T , ( 19 ) ∂ X ∂ X h l ( G ) = L G H T , ( 20 ) ∂ X ∂ X h h ( G ) = H G H T , ( 21 ) \begin{gathered} \frac{\partial\boldsymbol{X}}{\partial\boldsymbol{X}_{ll}}(G)={L}G{L}^{T}, \quad (18) \\ \frac{\partial\boldsymbol{X}}{\partial\boldsymbol{X}_{lh}}(G)={H}G{L}^{T}, \quad (19) \\ \frac{\partial\boldsymbol{X}}{\partial\boldsymbol{X}_{hl}}(G)={L}G{H}^{T}, \quad (20) \\ \frac{\partial\boldsymbol{X}}{\partial\boldsymbol{X}_{hh}}(G)={H}G{H}^{T}, \quad (21) \end{gathered} XllX(G)=LGLT,(18)XlhX(G)=HGLT,(19)XhlX(G)=LGHT,(20)XhhX(G)=HGHT,(21)
其中, G G G 是2D IDWT之后的层的反向传播输出。

3D DWT和IDWT的反向传播过程稍微复杂一点,但与1D/2D DWT和IDWT类似。本文使用有限滤波器,例如Haar小波,它的低通滤波和高通滤波可以表示为: l = 1 2 { 1 , 1 } \mathbf{l}=\frac{1}{\sqrt{2}}\{1,1\} l=2 1{1,1} h = 1 2 { 1 , − 1 } \mathbf{h}=\frac{1}{\sqrt{2}}\{1,-1\} h=2 1{1,1}

在网络层中,对于多通道数据进行逐通道的DWT和IDWT操作。

3. WaveCNets网络模型

3.1 基于小波的通用去噪方法

给定一个2D的噪声数据 X \mathbf{X} X,随机噪声主要表现在其高频成分中。如下图所示,基于小波的通用去噪方法[3],包括三个步骤:

  1. 使用DWT将带噪声的数据分解为低频成分 X l l \mathbf{X}_{ll} Xll 和高频成分 X l h , X h l , X h h \mathbf{X}_{lh}, \mathbf{X}_{hl}, \mathbf{X}_{hh} Xlh,Xhl,Xhh
  2. 使用滤波器对高频成分进行过滤;
  3. 使用IDWT对处理后的高频和低频成分进行重构。

在这里插入图片描述

3.2 最简单的基于去噪方法的小波

本文选择最简单的基于去噪方法的小波,也就是丢弃高频成分,如下图所示:

在这里插入图片描述

其中, D W T l l \mathrm{DWT}_{ll} DWTll 表示将特征图映射到低频成分的转换。

3.3 基于小波的下采样方法

本文通过用 D W T l l \mathrm{DWT}_{ll} DWTll 替换传统的下采样,设计出WaveCNets网络模型。如下图所示,(a) 表示传统的下采样方法,(b) 表示基于小波的下采样方法。

在这里插入图片描述

在WaveCNets网络中,将max-poolingaverage-pooling 直接替换为 D W T l l \mathrm{DWT}_{ll} DWTll 。同时,将 strided-convolution卷积替换为步长为1的卷积,也就是:
MaxPool s = 2 → DWT l l , ( 14 ) Conv s = 2 → DWT l l ∘ Conv s = 1 , ( 15 ) AvgPool s = 2 → DWT l l , ( 16 ) \begin{aligned}\text{MaxPool}_{s=2}&\to\text{DWT}_{ll},\quad&(14)\\\text{Conv}_{s=2}&\to\text{DWT}_{ll}\circ\text{Conv}_{s=1},\quad&(15)\\\text{AvgPool}_{s=2}&\to\text{DWT}_{ll},\quad&(16)\end{aligned} MaxPools=2Convs=2AvgPools=2DWTll,DWTllConvs=1,DWTll,(14)(15)(16)
其中 M a x p o o l s \mathrm {Maxpool_s} Maxpools C o n v s \mathrm {Conv_s} Convs A v g P o o l s \mathrm {AvgPool_s} AvgPools 分别表示 max-poolingstrided-convolutionaverage-poolings表示步长(stride)。

3.4 WaveCNets模型的优势

D W T l l \mathrm{DWT}_{ll} DWTll 对特征图进行去噪,移除高频成分,特征图尺寸减半。 D W T l l \mathrm{DWT}_{ll} DWTll 输出的低频成分,保存了特征图的主要信息,并提取出可识别的特征。在WaveCNets下采样过程中, D W T l l \mathrm{DWT}_{ll} DWTll 可以抵抗噪声的传播,有利于维持特征图中目标的基本结构。因此, D W T l l \mathrm{DWT}_{ll} DWTll 可以加快深度网络的训练,有利于更好的噪声鲁棒性提高分类模型的精度

四、相关经验

1. (TensorFlow)代码实现

Tensorflow实现小波池化层

五、参考文献

[1] Li Q, Shen L, Guo S, et al. Wavelet integrated CNNs for noise-robust image classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 7245-7254.

[2] Li Q, Shen L, Guo S, et al. Wavecnet: Wavelet integrated cnns to suppress aliasing effect for noise-robust image classification[J]. IEEE Transactions on Image Processing, 2021, 30: 7074-7089.

[3] Donoho D L. De-noising by soft-thresholding[J]. IEEE transactions on information theory, 1995, 41(3): 613-627.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/433528.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pdf.js 实现pdf在线搜索,分页,下载,放大,打印功能

下载插件地址: https://download.csdn.net/download/xiaogg3678/88780912 浏览器在线预览地址: http://localhost/pdfjs-viewer/web/viewer.html?filehttp://localhost/pdfjs-viewer/web/compressed.tracemonkey-pldi-09.pdf

springboot快速写接口

1. 建proj形式 name会变成文件夹的名字,相当于你的项目名称 基础包 2. 基础依赖 3. 配置数据库 这里要打开mysql,并且创建数据库 方法: 安装好数据库,改好账号密码用navicat来建表和账号配置properties.yml文件即可 4.用res…

C语言之指针的地址和指向的内容总结(八十四)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

分布式因果推断在美团履约平台的探索与实践

美团履约平台技术部在因果推断领域持续的探索和实践中,自研了一系列分布式的工具。本文重点介绍了分布式因果树算法的实现,并系统地阐述如何设计实现一种分布式因果树算法,以及因果效应评估方面qini_curve/qini_score的不足与应对技巧。希望能…

Discuz论坛搭建:Linux宝塔面板一键部署,固定地址畅享公网访问

🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 安装基础环境二. 一键部署Discuz三. 安装cpolar工具四. 配置域名访问Discuz…

ST-Link调试器:功能、用途和引脚

ST-Link调试器:功能、用途和引脚 介绍 在嵌入式系统开发中,调试器是一种至关重要的工具,它允许开发人员调试和编程微控制器,以确保系统正常运行并解决潜在的问题。ST-Link是STMicroelectronics公司推出的一款强大的调试器&#x…

【JaveWeb教程】(30)SpringBootWeb案例之《智能学习辅助系统》的详细实现步骤与代码示例(3)员工管理的实现

目录 SpringBootWeb案例033. 员工管理3.1 分页查询3.1.1 基础分页3.1.1.1 需求分析3.1.1.2 接口文档3.1.1.3 思路分析3.1.1.4 功能开发3.1.1.5 功能测试3.1.1.6 前后端联调 3.1.2 分页插件3.1.2.1 介绍3.1.2.2 代码实现3.1.2.3 测试 3.2 分页查询(带条件)3.2.1 需求3.2.2 思路分…

学习PyQt5

1、布局之后,无法移动对象到指定区域,无法改变对象大小。 原因:因为CtrlA选中了整个窗口,然后布局的时候就相当于整个窗口都按照这种布局,如选了水平布局,按钮一直在中间,无法拖到其它位置。 解…

华为三层交换机之基本操作

Telnet简介 Telnet是一个应用层协议,可以在Internet上或局域网上使用。它提供了基于文本的远程终端接口,允许用户在本地计算机上登录到远程计算机,然后像在本地计算机上一样使用远程计算机的资源。Telnet客户端和服务器之间的通信是通过Telnet协议进行的…

JDBC学习笔记

一.什么是JDBC 我们操作数据库是用sql语句,那么怎么编写程序来操作数据库呢?这就要学习JDBC。 JDBC就是使用Java中操作关系型数据库的一套API。全称:( Java DataBase Connectivity ) Java 数据库连接。 JDBC更准确的来说是一套接口/API&…

Vue2:通过代理服务器解决跨域问题

一、场景描述 现在的项目大多数是前后端分离的。Vue前端项目通过ajax去请求后端接口的时候,会有同源策略的限制。从而产生跨域问题。 二、基本概念 1、什么是同源策略? 就是前端服务和后端服务的协议名,IP或主机名,端口号不完…

牛客小白月赛85 E.烙饼

主要是学一下它的这个构造方法&#xff5e;看题不仔细 直接脑瘫 #include<bits/stdc.h> using namespace std; using ll long long; const int N 1e510; ll a[N],b[N]; ll n,m; ll sum; ll ans;priority_queue<pair<ll,ll>,vector<pair<ll,ll>>,g…