webassembly003 whisper.cpp的main项目-1

参数设置

/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug/bin/main
options:-h,        --help              [default] show this help message and exit-t N,      --threads N         [4      ] number of threads to use during computation-p N,      --processors N      [1      ] number of processors to use during computation-ot N,     --offset-t N        [0      ] time offset in milliseconds-on N,     --offset-n N        [0      ] segment index offset-d  N,     --duration N        [0      ] duration of audio to process in milliseconds-mc N,     --max-context N     [-1     ] maximum number of text context tokens to store-ml N,     --max-len N         [0      ] maximum segment length in characters-sow,      --split-on-word     [false  ] split on word rather than on token-bo N,     --best-of N         [5      ] number of best candidates to keep-bs N,     --beam-size N       [5      ] beam size for beam search-wt N,     --word-thold N      [0.01   ] word timestamp probability threshold-et N,     --entropy-thold N   [2.40   ] entropy threshold for decoder fail-lpt N,    --logprob-thold N   [-1.00  ] log probability threshold for decoder fail-debug,    --debug-mode        [false  ] enable debug mode (eg. dump log_mel)-tr,       --translate         [false  ] translate from source language to english-di,       --diarize           [false  ] stereo audio diarization-tdrz,     --tinydiarize       [false  ] enable tinydiarize (requires a tdrz model)-nf,       --no-fallback       [false  ] do not use temperature fallback while decoding-otxt,     --output-txt        [false  ] output result in a text file-ovtt,     --output-vtt        [false  ] output result in a vtt file-osrt,     --output-srt        [false  ] output result in a srt file-olrc,     --output-lrc        [false  ] output result in a lrc file-owts,     --output-words      [false  ] output script for generating karaoke video-fp,       --font-path         [/System/Library/Fonts/Supplemental/Courier New Bold.ttf] path to a monospace font for karaoke video-ocsv,     --output-csv        [false  ] output result in a CSV file-oj,       --output-json       [false  ] output result in a JSON file-ojf,      --output-json-full  [false  ] include more information in the JSON file-of FNAME, --output-file FNAME [       ] output file path (without file extension)-ps,       --print-special     [false  ] print special tokens-pc,       --print-colors      [false  ] print colors-pp,       --print-progress    [false  ] print progress-nt,       --no-timestamps     [false  ] do not print timestamps-l LANG,   --language LANG     [en     ] spoken language ('auto' for auto-detect)-dl,       --detect-language   [false  ] exit after automatically detecting language--prompt PROMPT     [       ] initial prompt-m FNAME,  --model FNAME       [models/ggml-base.en.bin] model path-f FNAME,  --file FNAME        [       ] input WAV file path-oved D,   --ov-e-device DNAME [CPU    ] the OpenVINO device used for encode inference-ls,       --log-score         [false  ] log best decoder scores of tokens-ng,       --no-gpu            [false  ] disable GPU

调试设置

在这里插入图片描述

项目依赖和CmakeLists.txt

set(TARGET main)
add_executable(${TARGET} main.cpp)include(DefaultTargetOptions)target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})
#include "common.h"#include "whisper.h"#include <cmath>
#include <fstream>
#include <cstdio>
#include <string>
#include <thread>
#include <vector>
#include <cstring>

main

int main(int argc, char ** argv) {// 1.解析参数whisper_params params;// 解析命令行参数,将结果保存到params中if (whisper_params_parse(argc, argv, params) == false) {… }// 检查输入文件名是否为空if (params.fname_inp.empty()) {… }// std::vector<std::string> fname_inp = {};// 检查语言参数是否有效if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) {… }// 检查两个布尔参数,如果同时为真,执行相应的错误处理代码if (params.diarize && params.tinydiarize) {… }// whisper initstruct whisper_context_params cparams;cparams.use_gpu = params.use_gpu;// 2.使用whisper初始化上下文,并根据给定的模型文件和参数进行配置struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);if (ctx == nullptr) {fprintf(stderr, "error: failed to initialize whisper context\n");return 3;}// initialize openvino encoder. this has no effect on whisper.cpp builds that don't have OpenVINO configured// 初始化OpenVINO编码器,对于没有配置OpenVINO的whisper.cpp构建,此调用无效whisper_ctx_init_openvino_encoder(ctx, nullptr, params.openvino_encode_device.c_str(), nullptr);// 3.对输入文件列表进行循环处理for (int f = 0; f < (int) params.fname_inp.size(); ++f) {… }whisper_print_timings(ctx); // 打印whisper上下文的计时信息whisper_free(ctx);// 释放whisper上下文占用的资源return 0;
}

1.解析参数

2.使用whisper初始化上下文,并根据给定的模型文件和参数进行配置

  • webassembly003 whisper.cpp的main项目-2:根据给定的模型文件和参数进行配置

3.对输入文件列表进行循环处理

3.1解析参数

        const auto fname_inp = params.fname_inp[f]; // "/home/***/whisper.cpp-1.5.0/samples/jfk.wav"const auto fname_out = f < (int) params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f]; // "/home/***/whisper.cpp-1.5.0/samples/jfk.wav"

3.2根据参数读取音频

        std::vector<float> pcmf32;               // mono-channel  单声道(音频只有一个声道) ,采样点类型为32位浮点数, `PCM` 表示脉冲编码调制std::vector<std::vector<float>> pcmf32s; // stereo-channel 立体声,即音频有两个声道(左声道和右声道)// read_wav 定义在 common.cpp, 如果在函数调用之前使用::,并且没有指定任何命名空间,那么它会被解释为全局命名空间。if (!::read_wav(fname_inp, pcmf32, pcmf32s, params.diarize)) { // if (!::read_wav(...)):使用 if 语句检查读取 WAV 文件的结果。! 表示逻辑取反,所以如果 read_wav 返回 false(表示读取失败),则执行下面的代码块。fprintf(stderr, "error: failed to read WAV file '%s'\n", fname_inp.c_str());continue;}

3.3print information

        // print system information{fprintf(stderr, "\n");fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info());}// print some info about the processing{fprintf(stderr, "\n");if (!whisper_is_multilingual(ctx)) {if (params.language != "en" || params.translate) {params.language = "en";params.translate = false;fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);}}if (params.detect_language) {params.language = "auto";}fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, %d beams + best of %d, lang = %s, task = %s, %stimestamps = %d ...\n",__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,params.n_threads, params.n_processors, params.beam_size, params.best_of,params.language.c_str(),params.translate ? "translate" : "transcribe",params.tinydiarize ? "tdrz = 1, " : "",params.no_timestamps ? 0 : 1);fprintf(stderr, "\n");}

3.4run the inference

3.4.1解析参数
            whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY;wparams.print_realtime   = false;wparams.print_progress   = params.print_progress;wparams.print_timestamps = !params.no_timestamps;wparams.print_special    = params.print_special;wparams.translate        = params.translate;wparams.language         = params.language.c_str();wparams.detect_language  = params.detect_language;wparams.n_threads        = params.n_threads;wparams.n_max_text_ctx   = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;wparams.offset_ms        = params.offset_t_ms;wparams.duration_ms      = params.duration_ms;wparams.token_timestamps = params.output_wts || params.output_jsn_full || params.max_len > 0;wparams.thold_pt         = params.word_thold;wparams.max_len          = params.output_wts && params.max_len == 0 ? 60 : params.max_len;wparams.split_on_word    = params.split_on_word;wparams.speed_up         = params.speed_up;wparams.debug_mode       = params.debug_mode;wparams.tdrz_enable      = params.tinydiarize; // [TDRZ]wparams.initial_prompt   = params.prompt.c_str();wparams.greedy.best_of        = params.best_of;wparams.beam_search.beam_size = params.beam_size;wparams.temperature_inc  = params.no_fallback ? 0.0f : wparams.temperature_inc;wparams.entropy_thold    = params.entropy_thold;wparams.logprob_thold    = params.logprob_thold;whisper_print_user_data user_data = { &params, &pcmf32s, 0 };// this callback is called on each new segmentif (!wparams.print_realtime) {wparams.new_segment_callback           = whisper_print_segment_callback;wparams.new_segment_callback_user_data = &user_data;}if (wparams.print_progress) {wparams.progress_callback           = whisper_print_progress_callback;wparams.progress_callback_user_data = &user_data;}
whisper_print_segment_callback:获取片段的推理结果并打印的回调函数
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {const auto & params  = *((whisper_print_user_data *) user_data)->params;const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;const int n_segments = whisper_full_n_segments(ctx);std::string speaker = "";int64_t t0 = 0;int64_t t1 = 0;// print the last n_new segmentsconst int s0 = n_segments - n_new;if (s0 == 0) {printf("\n");}for (int i = s0; i < n_segments; i++) {if (!params.no_timestamps || params.diarize) {t0 = whisper_full_get_segment_t0(ctx, i);t1 = whisper_full_get_segment_t1(ctx, i);}if (!params.no_timestamps) {printf("[%s --> %s]  ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());}if (params.diarize && pcmf32s.size() == 2) {speaker = estimate_diarization_speaker(pcmf32s, t0, t1);}if (params.print_colors) {for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {if (params.print_special == false) {const whisper_token id = whisper_full_get_token_id(ctx, i, j);if (id >= whisper_token_eot(ctx)) {continue;}}const char * text = whisper_full_get_token_text(ctx, i, j);const float  p    = whisper_full_get_token_p   (ctx, i, j);const int col = std::max(0, std::min((int) k_colors.size() - 1, (int) (std::pow(p, 3)*float(k_colors.size()))));printf("%s%s%s%s", speaker.c_str(), k_colors[col].c_str(), text, "\033[0m");}} else {const char * text = whisper_full_get_segment_text(ctx, i);printf("%s%s", speaker.c_str(), text);}if (params.tinydiarize) {if (whisper_full_get_segment_speaker_turn_next(ctx, i)) {printf("%s", params.tdrz_speaker_turn.c_str());}}// with timestamps or speakers: each segment on new lineif (!params.no_timestamps || params.diarize) {printf("\n");}fflush(stdout);}
}
3.4.2解析参数
            // examples for abort mechanism// in examples below, we do not abort the processing, but we could if the flag is set to true// the callback is called before every encoder run - if it returns false, the processing is aborted{static bool is_aborted = false; // NOTE: this should be atomic to avoid data racewparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {bool is_aborted = *(bool*)user_data;return !is_aborted;};wparams.encoder_begin_callback_user_data = &is_aborted;}// the callback is called before every computation - if it returns true, the computation is aborted{static bool is_aborted = false; // NOTE: this should be atomic to avoid data racewparams.abort_callback = [](void * user_data) {bool is_aborted = *(bool*)user_data;return is_aborted;};wparams.abort_callback_user_data = &is_aborted;}
3.4.3 process whisper_full_parallel
            if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {fprintf(stderr, "%s: failed to process audio\n", argv[0]);return 10;}
whisper_full_parallel
int whisper_full_parallel(struct whisper_context * ctx,struct whisper_full_params params,const float * samples,int n_samples,int n_processors) {if (n_processors == 1) {return whisper_full(ctx, params, samples, n_samples);}// 略
}
whisper_full
int whisper_full(struct whisper_context * ctx,struct whisper_full_params   params,const float * samples,int   n_samples) {return whisper_full_with_state(ctx, ctx->state, params, samples, n_samples);
}
whisper_full_with_state(推理的关键代码800行)
//没细看,有空再看
int whisper_full_with_state(struct whisper_context * ctx,struct whisper_state * state,struct whisper_full_params   params,const float * samples,int   n_samples) {// clear old resultsauto & result_all = state->result_all;result_all.clear();if (n_samples > 0) {// compute log mel spectrogramif (params.speed_up) {// TODO: Replace PV with more advanced algorithmWHISPER_LOG_ERROR("%s: failed to compute log mel spectrogram\n", __func__);return -1;} else {if (whisper_pcm_to_mel_with_state(ctx, state, samples, n_samples, params.n_threads) != 0) {WHISPER_LOG_ERROR("%s: failed to compute log mel spectrogram\n", __func__);return -2;}}}// auto-detect language if not specifiedif (params.language == nullptr || strlen(params.language) == 0 || strcmp(params.language, "auto") == 0 || params.detect_language) {std::vector<float> probs(whisper_lang_max_id() + 1, 0.0f);const auto lang_id = whisper_lang_auto_detect_with_state(ctx, state, 0, params.n_threads, probs.data());if (lang_id < 0) {WHISPER_LOG_ERROR("%s: failed to auto-detect language\n", __func__);return -3;}state->lang_id = lang_id;params.language = whisper_lang_str(lang_id);WHISPER_LOG_INFO("%s: auto-detected language: %s (p = %f)\n", __func__, params.language, probs[whisper_lang_id(params.language)]);if (params.detect_language) {return 0;}}if (params.token_timestamps) {state->t_beg    = 0;state->t_last   = 0;state->tid_last = 0;if (n_samples > 0) {state->energy = get_signal_energy(samples, n_samples, 32);}}const int seek_start = params.offset_ms/10;const int seek_end = params.duration_ms == 0 ? whisper_n_len_from_state(state) : seek_start + params.duration_ms/10;// if length of spectrogram is less than 1.0s (100 frames), then return// basically don't process anything that is less than 1.0s// see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39if (seek_end < seek_start + (params.speed_up ? 50 : 100)) {return 0;}// a set of temperatures to use// [ t0, t0 + delta, t0 + 2*delta, ..., < 1.0f + 1e-6f ]std::vector<float> temperatures;if (params.temperature_inc > 0.0f) {for (float t = params.temperature; t < 1.0f + 1e-6f; t += params.temperature_inc) {temperatures.push_back(t);}} else {temperatures.push_back(params.temperature);}// initialize the decodersint n_decoders = 1;switch (params.strategy) {case WHISPER_SAMPLING_GREEDY:{n_decoders = params.greedy.best_of;} break;case WHISPER_SAMPLING_BEAM_SEARCH:{n_decoders = std::max(params.greedy.best_of, params.beam_search.beam_size);} break;};n_decoders = std::max(1, n_decoders);if (n_decoders > WHISPER_MAX_DECODERS) {WHISPER_LOG_ERROR("%s: too many decoders requested (%d), max = %d\n", __func__, n_decoders, WHISPER_MAX_DECODERS);return -4;}// TAGS: WHISPER_DECODER_INITfor (int j = 1; j < n_decoders; j++) {auto & decoder = state->decoders[j];decoder.sequence.tokens.reserve(state->decoders[0].sequence.tokens.capacity());decoder.probs.resize   (ctx->vocab.n_vocab);decoder.logits.resize  (ctx->vocab.n_vocab);decoder.logprobs.resize(ctx->vocab.n_vocab);decoder.logits_id.reserve(ctx->model.hparams.n_vocab);decoder.rng = std::mt19937(0);}// the accumulated text context so farauto & prompt_past = state->prompt_past;if (params.no_context) {prompt_past.clear();}// prepare prompt{std::vector<whisper_token> prompt_tokens;// initial promptif (!params.prompt_tokens && params.initial_prompt) {prompt_tokens.resize(1024);prompt_tokens.resize(whisper_tokenize(ctx, params.initial_prompt, prompt_tokens.data(), prompt_tokens.size()));params.prompt_tokens   = prompt_tokens.data();params.prompt_n_tokens = prompt_tokens.size();}// prepend the prompt tokens to the prompt_pastif (params.prompt_tokens && params.prompt_n_tokens > 0) {// parse tokens from the pointerfor (int i = 0; i < params.prompt_n_tokens; i++) {prompt_past.push_back(params.prompt_tokens[i]);}std::rotate(prompt_past.begin(), prompt_past.end() - params.prompt_n_tokens, prompt_past.end());}}// overwrite audio_ctx, max allowed is hparams.n_audio_ctxif (params.audio_ctx > whisper_n_audio_ctx(ctx)) {WHISPER_LOG_ERROR("%s: audio_ctx is larger than the maximum allowed (%d > %d)\n", __func__, params.audio_ctx, whisper_n_audio_ctx(ctx));return -5;}state->exp_n_audio_ctx = params.audio_ctx;// these tokens determine the task that will be performedstd::vector<whisper_token> prompt_init = { whisper_token_sot(ctx), };if (whisper_is_multilingual(ctx)) {const int lang_id = whisper_lang_id(params.language);state->lang_id = lang_id;prompt_init.push_back(whisper_token_lang(ctx, lang_id));if (params.translate) {prompt_init.push_back(whisper_token_translate(ctx));} else {prompt_init.push_back(whisper_token_transcribe(ctx));}}// distilled models require the "no_timestamps" token{const bool is_distil = ctx->model.hparams.n_text_layer == 2;if (is_distil && !params.no_timestamps) {WHISPER_LOG_WARN("%s: using distilled model - forcing no_timestamps\n", __func__);params.no_timestamps = true;}}if (params.no_timestamps) {prompt_init.push_back(whisper_token_not(ctx));}int seek = seek_start;std::vector<whisper_token> prompt;prompt.reserve(whisper_n_text_ctx(ctx));struct beam_candidate {int decoder_idx;int seek_delta;bool has_ts;whisper_sequence sequence;whisper_grammar grammar;};std::vector<std::vector<beam_candidate>> bc_per_dec(n_decoders);std::vector<beam_candidate> beam_candidates;// main loopwhile (true) {if (params.progress_callback) {const int progress_cur = (100*(seek - seek_start))/(seek_end - seek_start);params.progress_callback(ctx, ctx->state, progress_cur, params.progress_callback_user_data);}// of only 1 second left, then stopif (seek + 100 >= seek_end) {break;}if (params.encoder_begin_callback) {if (params.encoder_begin_callback(ctx, state, params.encoder_begin_callback_user_data) == false) {WHISPER_LOG_ERROR("%s: encoder_begin_callback returned false - aborting\n", __func__);break;}}// encode audio features starting at offset seekif (!whisper_encode_internal(*ctx, *state, seek, params.n_threads, params.abort_callback, params.abort_callback_user_data)) {WHISPER_LOG_ERROR("%s: failed to encode\n", __func__);return -6;}// if there is a very short audio segment left to process, we remove any past prompt since it tends// to confuse the decoder and often make it repeat or hallucinate stuffif (seek > seek_start && seek + 500 >= seek_end) {prompt_past.clear();}int best_decoder_id = 0;for (int it = 0; it < (int) temperatures.size(); ++it) {const float t_cur = temperatures[it];int n_decoders_cur = 1;switch (params.strategy) {case whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY:{if (t_cur > 0.0f) {n_decoders_cur = params.greedy.best_of;}} break;case whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH:{if (t_cur > 0.0f) {n_decoders_cur = params.greedy.best_of;} else {n_decoders_cur = params.beam_search.beam_size;}} break;};n_decoders_cur = std::max(1, n_decoders_cur);WHISPER_PRINT_DEBUG("\n%s: strategy = %d, decoding with %d decoders, temperature = %.2f\n", __func__, params.strategy, n_decoders_cur, t_cur);// TAGS: WHISPER_DECODER_INITfor (int j = 0; j < n_decoders_cur; ++j) {auto & decoder = state->decoders[j];decoder.sequence.tokens.clear();decoder.sequence.result_len       = 0;decoder.sequence.sum_logprobs_all = 0.0;decoder.sequence.sum_logprobs     = -INFINITY;decoder.sequence.avg_logprobs     = -INFINITY;decoder.sequence.entropy          = 0.0;decoder.sequence.score            = -INFINITY;decoder.seek_delta = 100*WHISPER_CHUNK_SIZE;decoder.failed    = false;decoder.completed = false;decoder.has_ts    = false;if (params.grammar_rules != nullptr) {decoder.grammar = whisper_grammar_init(params.grammar_rules, params.n_grammar_rules, params.i_start_rule);} else {decoder.grammar = {};}}// init prompt and kv cache for the current iteration// TODO: do not recompute the prompt if it is the same as previous time{prompt.clear();// if we have already generated some text, use it as a prompt to condition the next generationif (!prompt_past.empty() && t_cur < 0.5f && params.n_max_text_ctx > 0) {int n_take = std::min(std::min(params.n_max_text_ctx, whisper_n_text_ctx(ctx)/2), int(prompt_past.size()));prompt = { whisper_token_prev(ctx) };prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());}// init new transcription with sot, language (opt) and task tokensprompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());// print the promptWHISPER_PRINT_DEBUG("\n\n");for (int i = 0; i < (int) prompt.size(); i++) {WHISPER_PRINT_DEBUG("%s: prompt[%d] = %s\n", __func__, i, ctx->vocab.id_to_token.at(prompt[i]).c_str());}WHISPER_PRINT_DEBUG("\n\n");whisper_kv_cache_clear(state->kv_self);whisper_batch_prep_legacy(state->batch, prompt.data(), prompt.size(), 0, 0);if (!whisper_decode_internal(*ctx, *state, state->batch, params.n_threads, params.abort_callback, params.abort_callback_user_data)) {WHISPER_LOG_ERROR("%s: failed to decode\n", __func__);return -7;}{const int64_t t_start_sample_us = ggml_time_us();state->decoders[0].i_batch = prompt.size() - 1;whisper_process_logits(*ctx, *state, state->decoders[0], params, t_cur);for (int j = 1; j < n_decoders_cur; ++j) {auto & decoder = state->decoders[j];whisper_kv_cache_seq_cp(state->kv_self, 0, j, -1, -1);memcpy(decoder.probs.data(),    state->decoders[0].probs.data(),    decoder.probs.size()*sizeof(decoder.probs[0]));memcpy(decoder.logits.data(),   state->decoders[0].logits.data(),   decoder.logits.size()*sizeof(decoder.logits[0]));memcpy(decoder.logprobs.data(), state->decoders[0].logprobs.data(), decoder.logprobs.size()*sizeof(decoder.logprobs[0]));}state->t_sample_us += ggml_time_us() - t_start_sample_us;}}for (int i = 0, n_max = whisper_n_text_ctx(ctx)/2 - 4; i < n_max; ++i) {const int64_t t_start_sample_us = ggml_time_us();if (params.strategy == whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH) {for (auto & bc : bc_per_dec) {bc.clear();}}// sampling// TODO: avoid memory allocations, optimize, avoid threads?{std::atomic<int> j_cur(0);auto process = [&]() {while (true) {const int j = j_cur.fetch_add(1);if (j >= n_decoders_cur) {break;}auto & decoder = state->decoders[j];if (decoder.completed || decoder.failed) {continue;}switch (params.strategy) {case whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY:{if (t_cur < 1e-6f) {decoder.sequence.tokens.push_back(whisper_sample_token(*ctx, decoder, true));} else {decoder.sequence.tokens.push_back(whisper_sample_token(*ctx, decoder, false));}decoder.sequence.sum_logprobs_all += decoder.sequence.tokens.back().plog;} break;case whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH:{const auto tokens_new = whisper_sample_token_topk(*ctx, decoder, params.beam_search.beam_size);for (const auto & token : tokens_new) {bc_per_dec[j].push_back({ j, decoder.seek_delta, decoder.has_ts, decoder.sequence, decoder.grammar, });bc_per_dec[j].back().sequence.tokens.push_back(token);bc_per_dec[j].back().sequence.sum_logprobs_all += token.plog;}} break;};}};const int n_threads = std::min(params.n_threads, n_decoders_cur);if (n_threads == 1) {process();} else {std::vector<std::thread> threads(n_threads - 1);for (int t = 0; t < n_threads - 1; ++t) {threads[t] = std::thread(process);}process();for (int t = 0; t < n_threads - 1; ++t) {threads[t].join();}}}beam_candidates.clear();for (const auto & bc : bc_per_dec) {beam_candidates.insert(beam_candidates.end(), bc.begin(), bc.end());if (!bc.empty()) {state->n_sample += 1;}}// for beam-search, choose the top candidates and update the KV cachesif (params.strategy == whisper_sampling_strategy::WHISPER_SAMPLING_BEAM_SEARCH) {std::sort(beam_candidates.begin(),beam_candidates.end(),[](const beam_candidate & a, const beam_candidate & b) {return a.sequence.sum_logprobs_all > b.sequence.sum_logprobs_all;});uint32_t cur_c = 0;for (int j = 0; j < n_decoders_cur; ++j) {auto & decoder = state->decoders[j];if (decoder.completed || decoder.failed) {continue;}if (cur_c >= beam_candidates.size()) {cur_c = 0;}auto & cur = beam_candidates[cur_c++];while (beam_candidates.size() > cur_c && beam_candidates[cur_c].sequence.sum_logprobs_all == cur.sequence.sum_logprobs_all && i > 0) {++cur_c;}decoder.seek_delta = cur.seek_delta;decoder.has_ts     = cur.has_ts;decoder.sequence   = cur.sequence;decoder.grammar    = cur.grammar;whisper_kv_cache_seq_cp(state->kv_self, cur.decoder_idx, WHISPER_MAX_DECODERS + j, -1, -1);WHISPER_PRINT_DEBUG("%s: beam search: decoder %d: from decoder %d: token = %10s, plog = %8.5f, sum_logprobs = %8.5f\n",__func__, j, cur.decoder_idx, ctx->vocab.id_to_token.at(decoder.sequence.tokens.back().id).c_str(), decoder.sequence.tokens.back().plog, decoder.sequence.sum_logprobs_all);}for (int j = 0; j < n_decoders_cur; ++j) {auto & decoder = state->decoders[j];if (decoder.completed || decoder.failed) {continue;}whisper_kv_cache_seq_rm(state->kv_self, j,                           -1, -1);whisper_kv_cache_seq_cp(state->kv_self, WHISPER_MAX_DECODERS + j, j, -1, -1);whisper_kv_cache_seq_rm(state->kv_self, WHISPER_MAX_DECODERS + j,    -1, -1);}}// update the decoder state// - check if the sequence is completed// - check if the sequence is failed// - update sliding window based on timestamp tokensfor (int j = 0; j < n_decoders_cur; ++j) {auto & decoder = state->decoders[j];if (decoder.completed || decoder.failed) {continue;}auto & has_ts     = decoder.has_ts;auto & failed     = decoder.failed;auto & completed  = decoder.completed;auto & seek_delta = decoder.seek_delta;auto & result_len = decoder.sequence.result_len;{const auto & token = decoder.sequence.tokens.back();// timestamp token - update sliding windowif (token.id > whisper_token_beg(ctx)) {const int seek_delta_new = 2*(token.id - whisper_token_beg(ctx));// do not allow to go back in timeif (has_ts && seek_delta > seek_delta_new && result_len < i) {failed = true; // TODO: maybe this is not a failure ?continue;}seek_delta = seek_delta_new;result_len = i + 1;has_ts = true;}whisper_grammar_accept_token(*ctx, decoder.grammar, token.id);#ifdef WHISPER_DEBUG{const auto tt = token.pt > 0.10 ? ctx->vocab.id_to_token.at(token.tid) : "[?]";WHISPER_PRINT_DEBUG("%s: id = %3d, decoder = %d, token = %6d, p = %6.3f, ts = %10s, %6.3f, result_len = %4d '%s'\n",__func__, i, j, token.id, token.p, tt.c_str(), token.pt, result_len, ctx->vocab.id_to_token.at(token.id).c_str());}
#endif// end of segmentif (token.id == whisper_token_eot(ctx) ||               // end of text token(params.max_tokens > 0 && i >= params.max_tokens) || // max tokens per segment reached(has_ts && seek + seek_delta + 100 >= seek_end)      // end of audio reached) {if (result_len == 0) {if (seek + seek_delta + 100 >= seek_end) {result_len = i + 1;} else {failed = true;continue;}}if (params.single_segment) {result_len = i + 1;seek_delta = 100*WHISPER_CHUNK_SIZE;}completed = true;continue;}// TESTS: if no tensors are loaded, it means we are running testsif (ctx->model.n_loaded == 0) {seek_delta = 100*WHISPER_CHUNK_SIZE;completed = true;continue;}}// sometimes, the decoding can get stuck in a repetition loop// this is an attempt to mitigate such cases - we flag the decoding as failed and use a fallback strategyif (i == n_max - 1 && (result_len == 0 || seek_delta < 100*WHISPER_CHUNK_SIZE/2)) {failed = true;continue;}}// check if all decoders have finished (i.e. completed or failed){bool completed_all = true;for (int j = 0; j < n_decoders_cur; ++j) {auto & decoder = state->decoders[j];if (decoder.completed || decoder.failed) {continue;}completed_all = false;}if (completed_all) {break;}}state->t_sample_us += ggml_time_us() - t_start_sample_us;// obtain logits for the next token{auto & batch = state->batch;batch.n_tokens = 0;const int n_past = prompt.size() + i;for (int j = 0; j < n_decoders_cur; ++j) {auto & decoder = state->decoders[j];if (decoder.failed || decoder.completed) {continue;}//WHISPER_PRINT_DEBUG("%s: decoder %d: token %d, seek_delta %d\n", __func__, j, decoder.sequence.tokens.back().id, decoder.seek_delta);decoder.i_batch = batch.n_tokens;batch.token   [batch.n_tokens]    = decoder.sequence.tokens.back().id;batch.pos     [batch.n_tokens]    = n_past;batch.n_seq_id[batch.n_tokens]    = 1;batch.seq_id  [batch.n_tokens][0] = j;batch.logits  [batch.n_tokens]    = 1;batch.n_tokens++;}assert(batch.n_tokens > 0);if (!whisper_decode_internal(*ctx, *state, state->batch, params.n_threads, params.abort_callback, params.abort_callback_user_data)) {WHISPER_LOG_ERROR("%s: failed to decode\n", __func__);return -8;}const int64_t t_start_sample_us = ggml_time_us();// TODO: avoid memory allocations, optimize, avoid threads?{std::atomic<int> j_cur(0);auto process = [&]() {while (true) {const int j = j_cur.fetch_add(1);if (j >= n_decoders_cur) {break;}auto & decoder = state->decoders[j];if (decoder.failed || decoder.completed) {continue;}whisper_process_logits(*ctx, *state, decoder, params, t_cur);}};const int n_threads = std::min(params.n_threads, n_decoders_cur);if (n_threads == 1) {process();} else {std::vector<std::thread> threads(n_threads - 1);for (int t = 0; t < n_threads - 1; ++t) {threads[t] = std::thread(process);}process();for (int t = 0; t < n_threads - 1; ++t) {threads[t].join();}}}state->t_sample_us += ggml_time_us() - t_start_sample_us;}}// rank the resulting sequences and select the best one{double best_score = -INFINITY;for (int j = 0; j < n_decoders_cur; ++j) {auto & decoder = state->decoders[j];if (decoder.failed) {continue;}decoder.sequence.tokens.resize(decoder.sequence.result_len);whisper_sequence_score(params, decoder.sequence);WHISPER_PRINT_DEBUG("%s: decoder %2d: score = %8.5f, result_len = %3d, avg_logprobs = %8.5f, entropy = %8.5f\n",__func__, j, decoder.sequence.score, decoder.sequence.result_len, decoder.sequence.avg_logprobs, decoder.sequence.entropy);if (decoder.sequence.result_len > 32 && decoder.sequence.entropy < params.entropy_thold) {WHISPER_PRINT_DEBUG("%s: decoder %2d: failed due to entropy %8.5f < %8.5f\n",__func__, j, decoder.sequence.entropy, params.entropy_thold);decoder.failed = true;state->n_fail_h++;continue;}if (best_score < decoder.sequence.score) {best_score = decoder.sequence.score;best_decoder_id = j;}}WHISPER_PRINT_DEBUG("%s: best decoder = %d\n", __func__, best_decoder_id);}// was the decoding successful for the current temperature?// do fallback only if:// - we are not at the last temperature// - we are not at the end of the audio (3 sec)if (it != (int) temperatures.size() - 1 &&seek_end - seek > 10*WHISPER_CHUNK_SIZE) {bool success = true;const auto & decoder = state->decoders[best_decoder_id];if (decoder.failed || decoder.sequence.avg_logprobs < params.logprob_thold) {success = false;state->n_fail_p++;}if (success) {//for (auto & token : ctx->decoders[best_decoder_id].sequence.tokens) {//    WHISPER_PRINT_DEBUG("%s: token = %d, p = %6.3f, pt = %6.3f, ts = %s, str = %s\n", __func__, token.id, token.p, token.pt, ctx->vocab.id_to_token.at(token.tid).c_str(), ctx->vocab.id_to_token.at(token.id).c_str());//}break;}}WHISPER_PRINT_DEBUG("\n%s: failed to decode with temperature = %.2f\n", __func__, t_cur);}// output results through a user-provided callback{const auto & best_decoder = state->decoders[best_decoder_id];const auto seek_delta = best_decoder.seek_delta;const auto result_len = best_decoder.sequence.result_len;const auto & tokens_cur = best_decoder.sequence.tokens;//WHISPER_PRINT_DEBUG("prompt_init.size() = %d, prompt.size() = %d, result_len = %d, seek_delta = %d\n", prompt_init.size(), prompt.size(), result_len, seek_delta);// update prompt_pastprompt_past.clear();if (prompt.front() == whisper_token_prev(ctx)) {prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end() - prompt_init.size());}for (int i = 0; i < result_len; ++i) {prompt_past.push_back(tokens_cur[i].id);}if (!tokens_cur.empty() && ctx->model.n_loaded > 0) {int  i0 = 0;auto t0 = seek + 2*(tokens_cur.front().tid - whisper_token_beg(ctx));std::string text;bool speaker_turn_next = false;for (int i = 0; i < (int) tokens_cur.size(); i++) {//printf("%s: %18s %6.3f %18s %6.3f\n", __func__,//        ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].p,//        ctx->vocab.id_to_token[tokens_cur[i].tid].c_str(), tokens_cur[i].pt);if (params.print_special || tokens_cur[i].id < whisper_token_eot(ctx)) {text += whisper_token_to_str(ctx, tokens_cur[i].id);}// [TDRZ] record if speaker turn was predicted after current segmentif (params.tdrz_enable && tokens_cur[i].id == whisper_token_solm(ctx)) {speaker_turn_next = true;}if (tokens_cur[i].id > whisper_token_beg(ctx) && !params.single_segment) {const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx));if (!text.empty()) {const auto tt0 = params.speed_up ? 2*t0 : t0;const auto tt1 = params.speed_up ? 2*t1 : t1;if (params.print_realtime) {if (params.print_timestamps) {printf("[%s --> %s]  %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str());} else {printf("%s", text.c_str());fflush(stdout);}}//printf("tt0 = %d, tt1 = %d, text = %s, token = %s, token_id = %d, tid = %d\n", tt0, tt1, text.c_str(), ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].id, tokens_cur[i].tid);result_all.push_back({ tt0, tt1, text, {}, speaker_turn_next });for (int j = i0; j <= i; j++) {result_all.back().tokens.push_back(tokens_cur[j]);}int n_new = 1;if (params.token_timestamps) {whisper_exp_compute_token_level_timestamps(*ctx, *state, result_all.size() - 1, params.thold_pt, params.thold_ptsum);if (params.max_len > 0) {n_new = whisper_wrap_segment(*ctx, *state, params.max_len, params.split_on_word);}}if (params.new_segment_callback) {params.new_segment_callback(ctx, state, n_new, params.new_segment_callback_user_data);}}text = "";while (i < (int) tokens_cur.size() && tokens_cur[i].id > whisper_token_beg(ctx)) {i++;}i--;t0 = t1;i0 = i + 1;speaker_turn_next = false;}}if (!text.empty()) {const auto t1 = seek + seek_delta;const auto tt0 = params.speed_up ? 2*t0 : t0;const auto tt1 = params.speed_up ? 2*t1 : t1;if (params.print_realtime) {if (params.print_timestamps) {printf("[%s --> %s]  %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str());} else {printf("%s", text.c_str());fflush(stdout);}}result_all.push_back({ tt0, tt1, text, {} , speaker_turn_next });for (int j = i0; j < (int) tokens_cur.size(); j++) {result_all.back().tokens.push_back(tokens_cur[j]);}int n_new = 1;if (params.token_timestamps) {whisper_exp_compute_token_level_timestamps(*ctx, *state, result_all.size() - 1, params.thold_pt, params.thold_ptsum);if (params.max_len > 0) {n_new = whisper_wrap_segment(*ctx, *state, params.max_len, params.split_on_word);}}if (params.new_segment_callback) {params.new_segment_callback(ctx, state, n_new, params.new_segment_callback_user_data);}}}// update audio windowseek += seek_delta;WHISPER_PRINT_DEBUG("seek = %d, seek_delta = %d\n", seek, seek_delta);}}return 0;
}

3.5output stuff

        // output stuff{printf("\n");// output to text fileif (params.output_txt) {const auto fname_txt = fname_out + ".txt";output_txt(ctx, fname_txt.c_str(), params, pcmf32s);}// output to VTT fileif (params.output_vtt) {const auto fname_vtt = fname_out + ".vtt";output_vtt(ctx, fname_vtt.c_str(), params, pcmf32s);}// output to SRT fileif (params.output_srt) {const auto fname_srt = fname_out + ".srt";output_srt(ctx, fname_srt.c_str(), params, pcmf32s);}// output to WTS fileif (params.output_wts) {const auto fname_wts = fname_out + ".wts";output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE, pcmf32s);}// output to CSV fileif (params.output_csv) {const auto fname_csv = fname_out + ".csv";output_csv(ctx, fname_csv.c_str(), params, pcmf32s);}// output to JSON fileif (params.output_jsn) {const auto fname_jsn = fname_out + ".json";output_json(ctx, fname_jsn.c_str(), params, pcmf32s, params.output_jsn_full);}// output to LRC fileif (params.output_lrc) {const auto fname_lrc = fname_out + ".lrc";output_lrc(ctx, fname_lrc.c_str(), params, pcmf32s);}// output to score fileif (params.log_score) {const auto fname_score = fname_out + ".score.txt";output_score(ctx, fname_score.c_str(), params, pcmf32s);}}

stream

stream的依赖

if (WHISPER_SDL2) #  需要set(WHISPER_SDL2 ON)#option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)# streamset(TARGET stream)add_executable(${TARGET} stream.cpp)include(DefaultTargetOptions)target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
endif ()
// Real-time speech recognition of input from a microphone
//
// A very quick-n-dirty implementation serving mainly as a proof of concept.
//
#include "common-sdl.h" // https://github1s.com/ggerganov/whisper.cpp/blob/d6b9be21d76b91a96bb987063b25e5b532140253/examples/common-sdl.h
#include "common.h"
#include "whisper.h"#include <cassert>
#include <cstdio>
#include <string>
#include <thread>
#include <vector>
#include <fstream>
[ 66%] Linking CXX static library libcommon.a
gmake[2]: 离开目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
[ 66%] Built target common
gmake[2]: 进入目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
gmake[2]: 进入目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
gmake[2]: 进入目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
Scanning dependencies of target stream
gmake[2]: 离开目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
gmake[2]: 离开目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
gmake[2]: 进入目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
gmake[2]: 进入目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
gmake[2]: 离开目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
[ 72%] Building CXX object examples/main/CMakeFiles/main.dir/main.cpp.o
gmake[2]: 进入目录“/home/pdd/le/whisper.cpp-1.5.0/cmake-build-debug”
[ 77%] Building CXX object examples/quantize/CMakeFiles/quantize.dir/quantize.cpp.o
[ 83%] Building CXX object examples/stream/CMakeFiles/stream.dir/stream.cpp.o
In file included from /home/pdd/le/whisper.cpp-1.5.0/examples/stream/stream.cpp:5:
/home/pdd/le/whisper.cpp-1.5.0/examples/common-sdl.h:3:10: fatal error: SDL.h: 没有那个文件或目录3 | #include <SDL.h>|          ^~~~~~~
compilation terminated.

SDL安装

        反正安装失败了,跟系统版本有关,各种依赖处理有点麻烦。

(base) pdd@pdd-Dell-G15-5511:~/le$ sudo apt install libsdl2-dev
[sudo] pdd 的密码: 
正在读取软件包列表... 完成
正在分析软件包的依赖关系树... 完成
正在读取状态信息... 完成                 
有一些软件包无法被安装。如果您用的是 unstable 发行版,这也许是
因为系统无法达到您要求的状态造成的。该版本中可能会有一些您需要的软件
包尚未被创建或是它们已被从新到(Incoming)目录移出。
下列信息可能会对解决问题有所帮助:下列软件包有未满足的依赖关系:udev : 破坏: systemd (< 249.11-0ubuntu3.11)破坏: systemd:i386 (< 249.11-0ubuntu3.11)推荐: systemd-hwe-hwdb 但是它将不会被安装
E: 错误,pkgProblemResolver::Resolve 发生故障,这可能是有软件包被要求保持现状的缘故。
(base) pdd@pdd-Dell-G15-5511:~/le$ sudo apt-get install libsdl2-dev
正在读取软件包列表... 完成
正在分析软件包的依赖关系树... 完成
正在读取状态信息... 完成                 
有一些软件包无法被安装。如果您用的是 unstable 发行版,这也许是
因为系统无法达到您要求的状态造成的。该版本中可能会有一些您需要的软件
包尚未被创建或是它们已被从新到(Incoming)目录移出。
下列信息可能会对解决问题有所帮助:下列软件包有未满足的依赖关系:udev : 破坏: systemd (< 249.11-0ubuntu3.11)破坏: systemd:i386 (< 249.11-0ubuntu3.11)推荐: systemd-hwe-hwdb 但是它将不会被安装
E: 错误,pkgProblemResolver::Resolve 发生故障,这可能是有软件包被要求保持现状的缘故。
(base) pdd@pdd-Dell-G15-5511:~/le$ sudo apt-get install libsdl2-2.0-0
正在读取软件包列表... 完成
正在分析软件包的依赖关系树... 完成
正在读取状态信息... 完成                 
下列软件包是自动安装的并且现在不需要了:fcitx-config-common fcitx-config-gtk fcitx-frontend-all fcitx-frontend-gtk2 fcitx-frontend-gtk3 fcitx-frontend-qt5 fcitx-module-dbusfcitx-module-kimpanel fcitx-module-lua fcitx-module-quickphrase-editor5 fcitx-module-x11 fcitx-modules fcitx-ui-classic g++-11 gir1.2-appindicator3-0.1gir1.2-gst-plugins-base-1.0 gir1.2-gstreamer-1.0 gir1.2-keybinder-3.0 gir1.2-wnck-3.0 gnome-session-canberra libfcitx-config4 libfcitx-core0libfcitx-gclient1 libfcitx-qt5-1 libfcitx-qt5-data libfcitx-utils0 libgettextpo0 libkeybinder-3.0-0 libpresage-data libpresage1v5 libtinyxml2.6.2v5libwnck-3-0 libwnck-3-common presage python3-gi-cairo
使用'sudo apt autoremove'来卸载它(它们)。
将会同时安装下列软件:libsndio6.1
建议安装:sndiod
下列【新】软件包将被安装:libsdl2-2.0-0 libsndio6.1
升级了 0 个软件包,新安装了 2 个软件包,要卸载 0 个软件包,有 28 个软件包未被升级。
需要下载 366 kB 的归档。
解压缩后会消耗 1,227 kB 的额外空间。
您希望继续执行吗? [Y/n] y
获取:1 http://dk.archive.ubuntu.com/ubuntu xenial/universe amd64 libsndio6.1 amd64 1.1.0-2 [23.2 kB]
获取:2 http://dk.archive.ubuntu.com/ubuntu xenial/universe amd64 libsdl2-2.0-0 amd64 2.0.4+dfsg1-2ubuntu2 [343 kB]
已下载 366 kB,耗时 4秒 (99.5 kB/s)     
正在选中未选择的软件包 libsndio6.1:amd64。
(正在读取数据库 ... 系统当前共安装有 285392 个文件和目录。)
准备解压 .../libsndio6.1_1.1.0-2_amd64.deb  ...
正在解压 libsndio6.1:amd64 (1.1.0-2) ...
正在选中未选择的软件包 libsdl2-2.0-0:amd64。
准备解压 .../libsdl2-2.0-0_2.0.4+dfsg1-2ubuntu2_amd64.deb  ...
正在解压 libsdl2-2.0-0:amd64 (2.0.4+dfsg1-2ubuntu2) ...
正在设置 libsndio6.1:amd64 (1.1.0-2) ...
正在设置 libsdl2-2.0-0:amd64 (2.0.4+dfsg1-2ubuntu2) ...
正在处理用于 libc-bin (2.35-0ubuntu3.1) 的触发器 ...
/sbin/ldconfig.real: /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link
$ sudo aptitude install libsdl2-dev
下列“新”软件包将被安装。         libsdl2-dev{b} libsndio-dev{a} 
下列软件包将被“删除”:fcitx-config-common{u} fcitx-config-gtk{u} fcitx-frontend-all{u} fcitx-frontend-gtk2{u} fcitx-frontend-gtk3{u} fcitx-frontend-qt5{u} fcitx-module-dbus{u} fcitx-module-kimpanel{u} fcitx-module-lua{u} fcitx-module-quickphrase-editor5{u} fcitx-module-x11{u} fcitx-modules{u} fcitx-ui-classic{u} g++-11{u} gir1.2-appindicator3-0.1{u} gir1.2-gst-plugins-base-1.0{u} gir1.2-gstreamer-1.0{u} gir1.2-keybinder-3.0{u} gir1.2-wnck-3.0{u} gnome-session-canberra{u} libfcitx-config4{u} libfcitx-core0{u} libfcitx-gclient1{u} libfcitx-qt5-1{u} libfcitx-qt5-data{u} libfcitx-utils0{u} libgettextpo0{u} libkeybinder-3.0-0{u} libpresage-data{u} libpresage1v5{u} libtinyxml2.6.2v5{u} libwnck-3-0{u} libwnck-3-common{u} presage{u} python3-gi-cairo{u} 
0 个软件包被升级,新安装 2 个,35 个将被删除, 同时 28 个将不升级。
需要获取 627 kB 的存档。解包后将释放 49.2 MB。
下列软件包存在未满足的依赖关系:libsdl2-dev : 依赖: libasound2-dev 但它是不可安装的依赖: libdbus-1-dev 但它是不可安装的依赖: libgles2-mesa-dev 但它是不可安装的依赖: libmirclient-dev 但它是不可安装的依赖: libpulse-dev 但它是不可安装的依赖: libudev-dev 但它是不可安装的依赖: libxkbcommon-dev 但它是不可安装的依赖: libxss-dev 但它是不可安装的依赖: libxv-dev 但它是不可安装的依赖: libxxf86vm-dev 但它是不可安装的
下列动作将解决这些依赖关系:保持 下列软件包于其当前版本:
1)     libsdl2-dev [未安装的]     是否接受该解决方案?[Y/n/q/?] y
下列软件包将被“删除”:fcitx-config-common{u} fcitx-config-gtk{u} fcitx-frontend-all{u} fcitx-frontend-gtk2{u} fcitx-frontend-gtk3{u} fcitx-frontend-qt5{u} fcitx-module-dbus{u} fcitx-module-kimpanel{u} fcitx-module-lua{u} fcitx-module-quickphrase-editor5{u} fcitx-module-x11{u} fcitx-modules{u} fcitx-ui-classic{u} g++-11{u} gir1.2-appindicator3-0.1{u} gir1.2-gst-plugins-base-1.0{u} gir1.2-gstreamer-1.0{u} gir1.2-keybinder-3.0{u} gir1.2-wnck-3.0{u} gnome-session-canberra{u} libfcitx-config4{u} libfcitx-core0{u} libfcitx-gclient1{u} libfcitx-qt5-1{u} libfcitx-qt5-data{u} libfcitx-utils0{u} libgettextpo0{u} libkeybinder-3.0-0{u} libpresage-data{u} libpresage1v5{u} libtinyxml2.6.2v5{u} libwnck-3-0{u} libwnck-3-common{u} presage{u} python3-gi-cairo{u} 
0 个软件包被升级,新安装 0 个,35 个将被删除, 同时 28 个将不升级。
需要获取 0 B 的存档。解包后将释放 53.1 MB。
您要继续吗?[Y/n/?] y
(正在读取数据库 ... 系统当前共安装有 285406 个文件和目录。)
正在卸载 fcitx-config-gtk (0.4.10-3) ...
正在卸载 fcitx-config-common (0.4.10-3) ...
正在卸载 fcitx-frontend-all (1:4.2.9.8-5) ...
正在卸载 fcitx-frontend-gtk2 (1:4.2.9.8-5) ...
正在卸载 fcitx-frontend-gtk3 (1:4.2.9.8-5) ...
正在卸载 fcitx-frontend-qt5:amd64 (1.2.7-1.2build1) ...
正在卸载 fcitx-module-kimpanel (1:4.2.9.8-5) ...
正在卸载 fcitx-module-dbus (1:4.2.9.8-5) ...
正在卸载 fcitx-module-lua (1:4.2.9.8-5) ...
正在卸载 fcitx-module-quickphrase-editor5:amd64 (1.2.7-1.2build1) ...
正在卸载 fcitx-ui-classic (1:4.2.9.8-5) ...
正在卸载 fcitx-module-x11 (1:4.2.9.8-5) ...
正在卸载 fcitx-modules (1:4.2.9.8-5) ...
正在卸载 g++-11 (11.3.0-1ubuntu1~22.04) ...
正在卸载 gir1.2-appindicator3-0.1 (12.10.1+20.10.20200706.1-0ubuntu1) ...
正在卸载 gir1.2-gst-plugins-base-1.0:amd64 (1.20.1-1) ...
正在卸载 gir1.2-gstreamer-1.0:amd64 (1.20.3-0ubuntu1) ...
正在卸载 gir1.2-keybinder-3.0 (0.3.2-1.1) ...
正在卸载 gir1.2-wnck-3.0:amd64 (40.1-1) ...
正在卸载 gnome-session-canberra (0.30-10ubuntu1) ...
正在卸载 libfcitx-qt5-1:amd64 (1.2.7-1.2build1) ...
正在卸载 libfcitx-core0:amd64 (1:4.2.9.8-5) ...
正在卸载 libfcitx-config4:amd64 (1:4.2.9.8-5) ...
正在卸载 libfcitx-gclient1:amd64 (1:4.2.9.8-5) ...
正在卸载 libfcitx-qt5-data (1.2.7-1.2build1) ...
正在卸载 libfcitx-utils0:amd64 (1:4.2.9.8-5) ...
正在卸载 libgettextpo0:amd64 (0.21-4ubuntu4) ...
正在卸载 libkeybinder-3.0-0:amd64 (0.3.2-1.1) ...
正在卸载 presage (0.9.1-2.2ubuntu1) ...
正在卸载 libpresage1v5:amd64 (0.9.1-2.2ubuntu1) ...
正在卸载 libpresage-data (0.9.1-2.2ubuntu1) ...
正在卸载 libtinyxml2.6.2v5:amd64 (2.6.2-6) ...
正在卸载 libwnck-3-0:amd64 (40.1-1) ...
正在卸载 libwnck-3-common (40.1-1) ...
正在卸载 python3-gi-cairo (3.42.1-0ubuntu1) ...
正在处理用于 mate-menus (1.26.0-2ubuntu2) 的触发器 ...
正在处理用于 libgtk-3-0:amd64 (3.24.33-1ubuntu2) 的触发器 ...
正在处理用于 libgtk2.0-0:amd64 (2.24.33-2ubuntu2) 的触发器 ...
正在处理用于 libc-bin (2.35-0ubuntu3.1) 的触发器 ...
/sbin/ldconfig.real: /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link正在处理用于 man-db (2.10.2-1) 的触发器 ...
正在处理用于 mailcap (3.70+nmu1ubuntu1) 的触发器 ...
正在处理用于 desktop-file-utils (0.26-1ubuntu3) 的触发器 ...

编译安装 https://wiki.libsdl.org/SDL2/Installation

make
git clone https://github.com/libsdl-org/SDL.git -b SDL2
cd SDL
mkdir build
cd build
../configure
make
sudo make install
cmake
git clone https://github.com/libsdl-org/SDL
cd SDL
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
cmake --build . --config Release --parallel#CMake >= 3.15
sudo cmake --install . --config Release#CMake <= 3.14
sudo make install

在这里插入图片描述~/mysdl/SDL2-2.28.5/build$ sudo cmake --install . --config Release [sudo] pdd 的密码: -- Installing: /usr/local/lib/libSDL2-2.0.so.0.2800.5 -- Installing: /usr/local/lib/libSDL2-2.0.so.0 -- Installing: /usr/local/lib/libSDL2-2.0.so -- Installing: /usr/local/lib/libSDL2main.a -- Installing: /usr/local/lib/libSDL2.a -- Installing: /usr/local/lib/libSDL2_test.a -- Installing: /usr/local/lib/cmake/SDL2/SDL2Targets.cmake -- Installing: /usr/local/lib/cmake/SDL2/SDL2Targets-release.cmake -- Installing: /usr/local/lib/cmake/SDL2/SDL2mainTargets.cmake -- Installing: /usr/local/lib/cmake/SDL2/SDL2mainTargets-release.cmake -- Installing: /usr/local/lib/cmake/SDL2/SDL2staticTargets.cmake -- Installing: /usr/local/lib/cmake/SDL2/SDL2staticTargets-release.cmake -- Installing: /usr/local/lib/cmake/SDL2/SDL2testTargets.cmake -- Installing: /usr/local/lib/cmake/SDL2/SDL2testTargets-release.cmake -- Installing: /usr/local/lib/cmake/SDL2/SDL2Config.cmake -- Installing: /usr/local/lib/cmake/SDL2/SDL2ConfigVersion.cmake -- Installing: /usr/local/lib/cmake/SDL2/sdlfind.cmake -- Installing: /usr/local/include/SDL2/SDL.h -- Installing: /usr/local/include/SDL2/SDL_assert.h -- Installing: /usr/local/include/SDL2/SDL_atomic.h -- Installing: /usr/local/include/SDL2/SDL_audio.h -- Installing: /usr/local/include/SDL2/SDL_bits.h -- Installing: /usr/local/include/SDL2/SDL_blendmode.h -- Installing: /usr/local/include/SDL2/SDL_clipboard.h -- Installing: /usr/local/include/SDL2/SDL_copying.h -- Installing: /usr/local/include/SDL2/SDL_cpuinfo.h -- Installing: /usr/local/include/SDL2/SDL_egl.h -- Installing: /usr/local/include/SDL2/SDL_endian.h -- Installing: /usr/local/include/SDL2/SDL_error.h -- Installing: /usr/local/include/SDL2/SDL_events.h -- Installing: /usr/local/include/SDL2/SDL_filesystem.h -- Installing: /usr/local/include/SDL2/SDL_gamecontroller.h -- Installing: /usr/local/include/SDL2/SDL_gesture.h -- Installing: /usr/local/include/SDL2/SDL_guid.h -- Installing: /usr/local/include/SDL2/SDL_haptic.h -- Installing: /usr/local/include/SDL2/SDL_hidapi.h -- Installing: /usr/local/include/SDL2/SDL_hints.h -- Installing: /usr/local/include/SDL2/SDL_joystick.h -- Installing: /usr/local/include/SDL2/SDL_keyboard.h -- Installing: /usr/local/include/SDL2/SDL_keycode.h -- Installing: /usr/local/include/SDL2/SDL_loadso.h -- Installing: /usr/local/include/SDL2/SDL_locale.h -- Installing: /usr/local/include/SDL2/SDL_log.h -- Installing: /usr/local/include/SDL2/SDL_main.h -- Installing: /usr/local/include/SDL2/SDL_messagebox.h -- Installing: /usr/local/include/SDL2/SDL_metal.h -- Installing: /usr/local/include/SDL2/SDL_misc.h -- Installing: /usr/local/include/SDL2/SDL_mouse.h -- Installing: /usr/local/include/SDL2/SDL_mutex.h -- Installing: /usr/local/include/SDL2/SDL_name.h -- Installing: /usr/local/include/SDL2/SDL_opengl.h -- Installing: /usr/local/include/SDL2/SDL_opengl_glext.h -- Installing: /usr/local/include/SDL2/SDL_opengles.h -- Installing: /usr/local/include/SDL2/SDL_opengles2.h -- Installing: /usr/local/include/SDL2/SDL_opengles2_gl2.h -- Installing: /usr/local/include/SDL2/SDL_opengles2_gl2ext.h -- Installing: /usr/local/include/SDL2/SDL_opengles2_gl2platform.h -- Installing: /usr/local/include/SDL2/SDL_opengles2_khrplatform.h -- Installing: /usr/local/include/SDL2/SDL_pixels.h -- Installing: /usr/local/include/SDL2/SDL_platform.h -- Installing: /usr/local/include/SDL2/SDL_power.h -- Installing: /usr/local/include/SDL2/SDL_quit.h -- Installing: /usr/local/include/SDL2/SDL_rect.h -- Installing: /usr/local/include/SDL2/SDL_render.h -- Installing: /usr/local/include/SDL2/SDL_rwops.h -- Installing: /usr/local/include/SDL2/SDL_scancode.h -- Installing: /usr/local/include/SDL2/SDL_sensor.h -- Installing: /usr/local/include/SDL2/SDL_shape.h -- Installing: /usr/local/include/SDL2/SDL_stdinc.h -- Installing: /usr/local/include/SDL2/SDL_surface.h -- Installing: /usr/local/include/SDL2/SDL_system.h -- Installing: /usr/local/include/SDL2/SDL_syswm.h -- Installing: /usr/local/include/SDL2/SDL_test.h -- Installing: /usr/local/include/SDL2/SDL_test_assert.h -- Installing: /usr/local/include/SDL2/SDL_test_common.h -- Installing: /usr/local/include/SDL2/SDL_test_compare.h -- Installing: /usr/local/include/SDL2/SDL_test_crc32.h -- Installing: /usr/local/include/SDL2/SDL_test_font.h -- Installing: /usr/local/include/SDL2/SDL_test_fuzzer.h -- Installing: /usr/local/include/SDL2/SDL_test_harness.h -- Installing: /usr/local/include/SDL2/SDL_test_images.h -- Installing: /usr/local/include/SDL2/SDL_test_log.h -- Installing: /usr/local/include/SDL2/SDL_test_md5.h -- Installing: /usr/local/include/SDL2/SDL_test_memory.h -- Installing: /usr/local/include/SDL2/SDL_test_random.h -- Installing: /usr/local/include/SDL2/SDL_thread.h -- Installing: /usr/local/include/SDL2/SDL_timer.h -- Installing: /usr/local/include/SDL2/SDL_touch.h -- Installing: /usr/local/include/SDL2/SDL_types.h -- Installing: /usr/local/include/SDL2/SDL_version.h -- Installing: /usr/local/include/SDL2/SDL_video.h -- Installing: /usr/local/include/SDL2/SDL_vulkan.h -- Installing: /usr/local/include/SDL2/begin_code.h -- Installing: /usr/local/include/SDL2/close_code.h -- Installing: /usr/local/include/SDL2/SDL_revision.h -- Installing: /usr/local/include/SDL2/SDL_config.h -- Installing: /usr/local/share/licenses/SDL2/LICENSE.txt -- Installing: /usr/local/lib/pkgconfig/sdl2.pc -- Installing: /usr/local/lib/libSDL2.so -- Installing: /usr/local/bin/sdl2-config -- Installing: /usr/local/share/aclocal/sdl2.m4

  • ERROR: Couldn’t initialize SDL: dsp: No such audio device
    在这里插入图片描述

CG

static const std::map<std::string, std::pair<int, std::string>> g_lang = {{ "en",  { 0,  "english",         } },{ "zh",  { 1,  "chinese",         } },{ "de",  { 2,  "german",          } },{ "es",  { 3,  "spanish",         } },{ "ru",  { 4,  "russian",         } },{ "ko",  { 5,  "korean",          } },{ "fr",  { 6,  "french",          } },{ "ja",  { 7,  "japanese",        } },{ "pt",  { 8,  "portuguese",      } },{ "tr",  { 9,  "turkish",         } },{ "pl",  { 10, "polish",          } },{ "ca",  { 11,  "catalan",        } },{ "nl",  { 12,  "dutch",          } },{ "ar",  { 13,  "arabic",         } },{ "sv",  { 14,  "swedish",        } },{ "it",  { 15,  "italian",        } },{ "id",  { 16,  "indonesian",     } },{ "hi",  { 17,  "hindi",          } },{ "fi",  { 18,  "finnish",        } },{ "vi",  { 19,  "vietnamese",     } },{ "he",  { 20,  "hebrew",         } },{ "uk",  { 21,  "ukrainian",      } },{ "el",  { 22,  "greek",          } },{ "ms",  { 23,  "malay",          } },{ "cs",  { 24,  "czech",          } },{ "ro",  { 25,  "romanian",       } },{ "da",  { 26,  "danish",         } },{ "hu",  { 27,  "hungarian",      } },{ "ta",  { 28,  "tamil",          } },{ "no",  { 29,  "norwegian",      } },{ "th",  { 30,  "thai",           } },{ "ur",  { 31,  "urdu",           } },{ "hr",  { 32,  "croatian",       } },{ "bg",  { 33,  "bulgarian",      } },{ "lt",  { 34,  "lithuanian",     } },{ "la",  { 35,  "latin",          } },{ "mi",  { 36,  "maori",          } },{ "ml",  { 37,  "malayalam",      } },{ "cy",  { 38,  "welsh",          } },{ "sk",  { 39,  "slovak",         } },{ "te",  { 40,  "telugu",         } },{ "fa",  { 41,  "persian",        } },{ "lv",  { 42,  "latvian",        } },{ "bn",  { 43,  "bengali",        } },{ "sr",  { 44,  "serbian",        } },{ "az",  { 45,  "azerbaijani",    } },{ "sl",  { 46,  "slovenian",      } },{ "kn",  { 47,  "kannada",        } },{ "et",  { 48,  "estonian",       } },{ "mk",  { 49,  "macedonian",     } },{ "br",  { 50,  "breton",         } },{ "eu",  { 51,  "basque",         } },{ "is",  { 52,  "icelandic",      } },{ "hy",  { 53,  "armenian",       } },{ "ne",  { 54,  "nepali",         } },{ "mn",  { 55,  "mongolian",      } },{ "bs",  { 56,  "bosnian",        } },{ "kk",  { 57,  "kazakh",         } },{ "sq",  { 58,  "albanian",       } },{ "sw",  { 59,  "swahili",        } },{ "gl",  { 60,  "galician",       } },{ "mr",  { 61,  "marathi",        } },{ "pa",  { 62,  "punjabi",        } },{ "si",  { 63,  "sinhala",        } },{ "km",  { 64,  "khmer",          } },{ "sn",  { 65,  "shona",          } },{ "yo",  { 66,  "yoruba",         } },{ "so",  { 67,  "somali",         } },{ "af",  { 68,  "afrikaans",      } },{ "oc",  { 69,  "occitan",        } },{ "ka",  { 70,  "georgian",       } },{ "be",  { 71,  "belarusian",     } },{ "tg",  { 72,  "tajik",          } },{ "sd",  { 73,  "sindhi",         } },{ "gu",  { 74,  "gujarati",       } },{ "am",  { 75,  "amharic",        } },{ "yi",  { 76,  "yiddish",        } },{ "lo",  { 77,  "lao",            } },{ "uz",  { 78,  "uzbek",          } },{ "fo",  { 79,  "faroese",        } },{ "ht",  { 80,  "haitian creole", } },{ "ps",  { 81,  "pashto",         } },{ "tk",  { 82,  "turkmen",        } },{ "nn",  { 83,  "nynorsk",        } },{ "mt",  { 84,  "maltese",        } },{ "sa",  { 85,  "sanskrit",       } },{ "lb",  { 86,  "luxembourgish",  } },{ "my",  { 87,  "myanmar",        } },{ "bo",  { 88,  "tibetan",        } },{ "tl",  { 89,  "tagalog",        } },{ "mg",  { 90,  "malagasy",       } },{ "as",  { 91,  "assamese",       } },{ "tt",  { 92,  "tatar",          } },{ "haw", { 93,  "hawaiian",       } },{ "ln",  { 94,  "lingala",        } },{ "ha",  { 95,  "hausa",          } },{ "ba",  { 96,  "bashkir",        } },{ "jw",  { 97,  "javanese",       } },{ "su",  { 98,  "sundanese",      } },{ "yue", { 99,  "cantonese",      } },
};

在这里插入图片描述

(base) pdd@pdd-Dell-G15-5511:~/le$ git clone http://github.com/hogelog/whispercppapp.git --recurse-submodules
正克隆到 'whispercppapp'...
warning: 重定向到 https://github.com/hogelog/whispercppapp.git/
remote: Enumerating objects: 411, done.
remote: Counting objects: 100% (411/411), done.
remote: Compressing objects: 100% (245/245), done.
remote: Total 411 (delta 150), reused 368 (delta 113), pack-reused 0
接收对象中: 100% (411/411), 454.29 KiB | 161.00 KiB/s, 完成.
处理 delta 中: 100% (150/150), 完成.
子模组 'whisper.cpp'(https://github.com/ggerganov/whisper.cpp.git)已对路径 'whisper.cpp' 注册
正克隆到 '/home/pdd/le/whispercppapp/whisper.cpp'...
remote: Enumerating objects: 6590, done.        
remote: Counting objects: 100% (1812/1812), done.        
remote: Compressing objects: 100% (192/192), done.        
error: RPC 失败。curl 16 Error in the HTTP2 framing layer
error: 预期仍然需要 5253 个字节的正文
fetch-pack: unexpected disconnect while reading sideband packet
fatal: 过早的文件结束符(EOF)
fatal: fetch-pack:无效的 index-pack 输出
fatal: 无法克隆 'https://github.com/ggerganov/whisper.cpp.git' 到子模组路径 '/home/pdd/le/whispercppapp/whisper.cpp'
克隆 'whisper.cpp' 失败。按计划重试
正克隆到 '/home/pdd/le/whispercppapp/whisper.cpp'...
remote: Enumerating objects: 6590, done.        
remote: Counting objects: 100% (1807/1807), done.        
remote: Compressing objects: 100% (191/191), done.        
remote: Total 6590 (delta 1699), reused 1651 (delta 1613), pack-reused 4783        
接收对象中: 100% (6590/6590), 9.99 MiB | 209.00 KiB/s, 完成.
处理 delta 中: 100% (4244/4244), 完成.
子模组路径 'whisper.cpp':检出 'ad1389003d3f8bd47b8ca7d4c21b4764cc3844fc'
子模组 'bindings/ios'(https://github.com/ggerganov/whisper.spm)已对路径 'whisper.cpp/bindings/ios' 注册
正克隆到 '/home/pdd/le/whispercppapp/whisper.cpp/bindings/ios'...
remote: Enumerating objects: 357, done.        
remote: Counting objects: 100% (151/151), done.        
remote: Compressing objects: 100% (71/71), done.        
remote: Total 357 (delta 104), reused 104 (delta 80), pack-reused 206        
接收对象中: 100% (357/357), 1.11 MiB | 163.00 KiB/s, 完成.
处理 delta 中: 100% (197/197), 完成.
子模组路径 'whisper.cpp/bindings/ios':检出 '92d4c5c9a07b726e35c20dc513532789919e00c4'
子模组路径 'whisper.cpp':检出 'ad1389003d3f8bd47b8ca7d4c21b4764cc3844fc'

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/433761.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于python flask茶叶网站数据大屏设计与实现,可以做期末课程设计或者毕业设计

基于Python的茶叶网站数据大屏设计与实现是一个适合期末课程设计或毕业设计的项目。该项目旨在利用Python技术和数据可视化方法&#xff0c;设计和开发一个针对茶叶行业的数据大屏&#xff0c;用于展示和分析茶叶网站的相关数据。 项目背景 随着互联网的快速发展&#xff0c;越…

项目部署上线过程

写在前面 你应该去喜欢那些&#xff0c;让你觉得自己很美好&#xff0c;由衷感受到幸福的人&#xff0c;而不是那些让你卑微到尘埃里&#xff0c;让你觉得自己很没用的人。 …

PWN入门Protostar靶场Stack系列

Protostar靶场地址 https://exploit.education/protostar/溢出 源码分析 #include <stdlib.h> #include <unistd.h> #include <stdio.h>int main(int argc, char **argv) {volatile int modified; //定义一个变量char buffer[64]; //给…

【shell-10】shell实现的各种kafka脚本

kafka-shell工具 背景日志 log一.启动kafka->(start-kafka)二.停止kafka->(stop-kafka)三.创建topic->(create-topic)四.删除topic->(delete-topic)五.获取topic列表->(list-topic)六. 将文件数据 录入到kafka->(file-to-kafka)七.将kafka数据 下载到文件-&g…

k8s-基础知识(Service,NodePort,CusterIP,无头服务,NameSpace,资源限制)

Node Node 是 Pod 真正运行的主机&#xff0c;可以是物理机&#xff0c;也可以是虚拟机。 Annotations 原文链接 Annotations 是 key/value 形式附加于对象的注解。不同于 Labels 用于标志和选择对象&#xff0c;Annotations 则是用来记录一些附加信息&#xff0c;用来辅助应…

Docker部署思维导图工具SimpleMindMap并实现公网远程访问

文章目录 1. Docker一键部署思维导图2. 本地访问测试3. Linux安装Cpolar4. 配置公网地址5. 远程访问思维导图6. 固定Cpolar公网地址7. 固定地址访问 SimpleMindMap 是一个可私有部署的web思维导图工具。它提供了丰富的功能和特性&#xff0c;包含插件化架构、多种结构类型&…

如何实现无公网IP实现远程访问MongoDB文件数据库

&#x1f4d1;前言 本文主要是如何实现无公网IP实现远程访问MongoDB文件数据库的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是青衿&#x1f947; ☁️博客首页&#xff1a;CSDN主页放风讲故事 &#x…

基于Matlab/Simulink直驱式风电储能制氢仿真模型

接着还是以直驱式风电为DG中的研究对象&#xff0c;上篇博客考虑的风电并网惯性的问题&#xff0c;这边博客主要讨论功率消纳的问题。 考虑到风速是随机变化的&#xff0c;导致风电输出功率的波动性和间歇性问题突出&#xff1b;随着其应用规模的不断扩大以及风电在电网中渗透率…

uniapp小程序:内存超过2mb解决方法(简单)message:Error: 上传失败:网络请求错误 代码包大小超过限制。

分析&#xff1a;这种情况是代码文件内存超过2mb无法进行预览上传 解决方法&#xff1a; 1、Hbuilder中点击运行-->运行到小程序模拟器--->运行时是否压缩代码 2、在微信小程序中点击详情--->本地设置&#xff1a; 3、点击预览即可运行了

Elment UI的el-table-column表头旁边有点击按钮类似的操作

Elment UI的el-table-column表头旁边有点击按钮类似的操作 <el-table-column fixed"right" label"操作" ><!-- 表头 --> {{-- <template slot"header" header"scope">--}} {{-- <span…

【机组】单元模块的软件简介和安装

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《机组 | 模块单元实验》⏰诗赋清音&#xff1a;云生高巅梦远游&#xff0c; 星光点缀碧海愁。 山川深邃情难晤&#xff0c; 剑气凌云志自修。 目录 【软件简介和安装】 1 性能特…

Spring Boot 中 Service 层依赖注入问题

目录 问题描述 产生错误 问题原因 解决方法 手动注入方法 1、使用工具集 hutool&#xff0c;引入 Maven 依赖 2、编写 SpringUtil 工具类 问题描述 Controller 层方法为 static 静态&#xff0c;引入 Service 层时使用 Autowired 注解自动装配&#xff0c;Controller层方…