C++力扣题目62--不同路径 63--不同路径II 343--整数拆分 96--不同的二叉搜索树

62.不同路径

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

  • 输入:m = 3, n = 7
  • 输出:28

示例 2:

  • 输入:m = 2, n = 3
  • 输出:3

解释: 从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例 3:

  • 输入:m = 7, n = 3
  • 输出:28

示例 4:

  • 输入:m = 3, n = 3
  • 输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9

#思路

#深搜

这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。

注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

如图举例:

62.不同路径

此时问题就可以转化为求二叉树叶子节点的个数,代码如下:

class Solution {
private:int dfs(int i, int j, int m, int n) {if (i > m || j > n) return 0; // 越界了if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);}
public:int uniquePaths(int m, int n) {return dfs(1, 1, m, n);}
};

大家如果提交了代码就会发现超时了!

来分析一下时间复杂度,这个深搜的算法,其实就是要遍历整个二叉树。

这棵树的深度其实就是m+n-1(深度按从1开始计算)。

那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。

#动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;


 

  1. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组

如图所示:

62.不同路径1

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m; i++) dp[i][0] = 1;for (int j = 0; j < n; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};

  • 时间复杂度:O(m × n)
  • 空间复杂度:O(m × n)

其实用一个一维数组(也可以理解是滚动数组)就可以了,但是不利于理解,可以优化点空间,建议先理解了二维,在理解一维,C++代码如下:

class Solution {
public:int uniquePaths(int m, int n) {vector<int> dp(n);for (int i = 0; i < n; i++) dp[i] = 1;for (int j = 1; j < m; j++) {for (int i = 1; i < n; i++) {dp[i] += dp[i - 1];}}return dp[n - 1];}
};

  • 时间复杂度:O(m × n)
  • 空间复杂度:O(n)

#数论方法

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

62.不同路径

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

那么答案,如图所示:

62.不同路径2

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

例如如下代码是不行的。

class Solution {
public:int uniquePaths(int m, int n) {int numerator = 1, denominator = 1;int count = m - 1;int t = m + n - 2;while (count--) numerator *= (t--); // 计算分子,此时分子就会溢出for (int i = 1; i <= m - 1; i++) denominator *= i; // 计算分母return numerator / denominator;}
};

需要在计算分子的时候,不断除以分母,代码如下:

class Solution {
public:int uniquePaths(int m, int n) {long long numerator = 1; // 分子int denominator = m - 1; // 分母int count = m - 1;int t = m + n - 2;while (count--) {numerator *= (t--);while (denominator != 0 && numerator % denominator == 0) {numerator /= denominator;denominator--;}}return numerator;}
};

  • 时间复杂度:O(m)
  • 空间复杂度:O(1)

计算组合问题的代码还是有难度的,特别是处理溢出的情况!

#总结

本文分别给出了深搜,动规,数论三种方法。

深搜当然是超时了,顺便分析了一下使用深搜的时间复杂度,就可以看出为什么超时了。

然后在给出动规的方法,依然是使用动规五部曲,这次我们就要考虑如何正确的初始化了,初始化和遍历顺序其实也很重要!

63. 不同路径 II

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

  • 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
  • 输出:2 解释:
  • 3x3 网格的正中间有一个障碍物。
  • 从左上角到右下角一共有 2 条不同的路径:
    1. 向右 -> 向右 -> 向下 -> 向下
    2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

  • 输入:obstacleGrid = [[0,1],[0,0]]
  • 输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

#思路

这道题相对于62.不同路径 (opens new window)就是有了障碍。

第一次接触这种题目的同学可能会有点懵,这有障碍了,应该怎么算呢?

62.不同路径 (opens new window)中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

所以代码为:

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}

  1. dp数组如何初始化

在62.不同路径 (opens new window)不同路径中我们给出如下的初始化:

vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

63.不同路径II

下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

  1. 确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

代码如下:

for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}
}

  1. 举例推导dp数组

拿示例1来举例如题:

63.不同路径II1

对应的dp table 如图:

63.不同路径II2

如果这个图看不懂,建议再理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!

动规五部分分析完毕,对应C++代码如下:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0return 0;vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
};


 

  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(n × m)

同样我们给出空间优化版本:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {if (obstacleGrid[0][0] == 1)return 0;vector<int> dp(obstacleGrid[0].size());for (int j = 0; j < dp.size(); ++j)if (obstacleGrid[0][j] == 1)dp[j] = 0;else if (j == 0)dp[j] = 1;elsedp[j] = dp[j-1];for (int i = 1; i < obstacleGrid.size(); ++i)for (int j = 0; j < dp.size(); ++j){if (obstacleGrid[i][j] == 1)dp[j] = 0;else if (j != 0)dp[j] = dp[j] + dp[j-1];}return dp.back();}
};

  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(m)

#总结

本题是62.不同路径 (opens new window)的障碍版,整体思路大体一致。

但就算是做过62.不同路径,在做本题也会有感觉遇到障碍无从下手。

其实只要考虑到,遇到障碍dp[i][j]保持0就可以了。

也有一些小细节,例如:初始化的部分,很容易忽略了障碍之后应该都是0的情况。

 

343. 整数拆分

力扣题目链接(opens new window)

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

  • 输入: 2
  • 输出: 1
  • 解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

  • 输入: 10
  • 输出: 36
  • 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
  • 说明: 你可以假设 n 不小于 2 且不大于 58。

#思路

看到这道题目,都会想拆成两个呢,还是三个呢,还是四个....

我们来看一下如何使用动规来解决。

#动态规划

动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!

  1. 确定递推公式

可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

那有同学问了,j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

  1. dp的初始化

不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?

有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。

拆分0和拆分1的最大乘积是多少?

这是无解的。

这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!

  1. 确定遍历顺序

确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

所以遍历顺序为:

for (int i = 3; i <= n ; i++) {for (int j = 1; j < i - 1; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}
}

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

更优化一步,可以这样:

for (int i = 3; i <= n ; i++) {for (int j = 1; j <= i / 2; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}
}

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

至于 “拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的” 这个我就不去做数学证明了,感兴趣的同学,可以自己证明。

  1. 举例推导dp数组

举例当n为10 的时候,dp数组里的数值,如下:

343.整数拆分

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:int integerBreak(int n) {vector<int> dp(n + 1);dp[2] = 1;for (int i = 3; i <= n ; i++) {for (int j = 1; j <= i / 2; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}}return dp[n];}
};

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n)

#贪心

本题也可以用贪心,每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!

我没有证明,而是直接用了结论。感兴趣的同学可以自己再去研究研究数学证明哈。

给出我的C++代码如下:

class Solution {
public:int integerBreak(int n) {if (n == 2) return 1;if (n == 3) return 2;if (n == 4) return 4;int result = 1;while (n > 4) {result *= 3;n -= 3;}result *= n;return result;}
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

#总结

本题掌握其动规的方法,就可以了,贪心的解法确实简单,但需要有数学证明,如果能自圆其说也是可以的。

其实这道题目的递推公式并不好想,而且初始化的地方也很有讲究,我在写本题的时候一开始写的代码是这样的:

class Solution {
public:int integerBreak(int n) {if (n <= 3) return 1 * (n - 1);vector<int> dp(n + 1, 0);dp[1] = 1;dp[2] = 2;dp[3] = 3;for (int i = 4; i <= n ; i++) {for (int j = 1; j <= i / 2; j++) {dp[i] = max(dp[i], dp[i - j] * dp[j]);}}return dp[n];}
};

这个代码也是可以过的!

在解释递推公式的时候,也可以解释通,dp[i] 就等于 拆解i - j的最大乘积 * 拆解j的最大乘积。 看起来没毛病!

但是在解释初始化的时候,就发现自相矛盾了,dp[1]为什么一定是1呢?根据dp[i]的定义,dp[2]也不应该是2啊。

但如果递归公式是 dp[i] = max(dp[i], dp[i - j] * dp[j]);,就一定要这么初始化。递推公式没毛病,但初始化解释不通!

虽然代码在初始位置有一个判断if (n <= 3) return 1 * (n - 1);,保证n<=3 结果是正确的,但代码后面又要给dp[1]赋值1 和 dp[2] 赋值 2,这其实就是自相矛盾的代码,违背了dp[i]的定义!

我举这个例子,其实就说做题的严谨性,上面这个代码也可以AC,大体上一看好像也没有毛病,递推公式也说得过去,但是仅仅是恰巧过了而已。

 

96.不同的二叉搜索树

力扣题目链接(opens new window)

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

#思路

这道题目描述很简短,但估计大部分同学看完都是懵懵的状态,这得怎么统计呢?

关于什么是二叉搜索树,我们之前在讲解二叉树专题的时候已经详细讲解过了,也可以看看这篇二叉树:二叉搜索树登场! (opens new window)再回顾一波。

了解了二叉搜索树之后,我们应该先举几个例子,画画图,看看有没有什么规律,如图:

96.不同的二叉搜索树

n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

96.不同的二叉搜索树1

来看看n为3的时候,有哪几种情况。

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

如图所示:

96.不同的二叉搜索树2

此时我们已经找到递推关系了,那么可以用动规五部曲再系统分析一遍。

  1. 确定dp数组(dp table)以及下标的含义

dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]

也可以理解是i个不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。

以下分析如果想不清楚,就来回想一下dp[i]的定义

  1. 确定递推公式

在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

  1. dp数组如何初始化

初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

那么dp[0]应该是多少呢?

从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

所以初始化dp[0] = 1

  1. 确定遍历顺序

首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

代码如下:

for (int i = 1; i <= n; i++) {for (int j = 1; j <= i; j++) {dp[i] += dp[j - 1] * dp[i - j];}
}

  1. 举例推导dp数组

n为5时候的dp数组状态如图:

96.不同的二叉搜索树3

当然如果自己画图举例的话,基本举例到n为3就可以了,n为4的时候,画图已经比较麻烦了。

我这里列到了n为5的情况,是为了方便大家 debug代码的时候,把dp数组打出来,看看哪里有问题

综上分析完毕,C++代码如下:

class Solution {
public:int numTrees(int n) {vector<int> dp(n + 1);dp[0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= i; j++) {dp[i] += dp[j - 1] * dp[i - j];}}return dp[n];}
};

  • 时间复杂度:$O(n^2)$
  • 空间复杂度:$O(n)$

大家应该发现了,我们分析了这么多,最后代码却如此简单!

#总结

这道题目虽然在力扣上标记是中等难度,但可以算是困难了!

首先这道题想到用动规的方法来解决,就不太好想,需要举例,画图,分析,才能找到递推的关系。

然后难点就是确定递推公式了,如果把递推公式想清楚了,遍历顺序和初始化,就是自然而然的事情了。

可以看出我依然还是用动规五部曲来进行分析,会把题目的方方面面都覆盖到!

而且具体这五部分析是我自己平时总结的经验,找不出来第二个的,可能过一阵子 其他题解也会有动规五部曲了

当时我在用动规五部曲讲解斐波那契的时候,一些录友和我反应,感觉讲复杂了。

其实当时我一直强调简单题是用来练习方法论的,并不能因为简单我就代码一甩,简单解释一下就完事了。

可能当时一些同学不理解,现在大家应该感受方法论的重要性了,加油💪

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/433897.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vite+Electron快速构建一个VUE3桌面应用(一)

一. 简介 首先&#xff0c;介绍下vite和Electron。 Vite是一种新型前端构建工具&#xff0c;能够显著提升前端开发体验。Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 嵌入Chromium和Node.js到二进制的 Electron 允许您保持一个 JavaScript 代码代码…

剧本杀小程序开发:打造沉浸式推理体验

随着社交娱乐形式的多样化&#xff0c;剧本杀逐渐成为年轻人喜爱的聚会活动。而随着技术的发展&#xff0c;剧本杀小程序的开发也成为了可能。本文将探讨剧本杀小程序开发的必要性、功能特点、开发流程以及市场前景。 一、剧本杀小程序开发的必要性 剧本杀是一种角色扮演的推…

NPDP认证:产品经理的国际专业认证

你是否想证明自己在产品开发与管理方面的专业能力&#xff1f;NPDP认证正是你需要的&#xff01;&#x1f525; NPDP认证&#xff0c;即产品经理国际资格认证&#xff0c;由美国产品开发与管理协会&#xff08;PDMA&#xff09;所发起&#xff0c;是全球公认的新产品开发专业认…

Java入门高频考查基础知识7-深入挖掘Java集合框架的奇幻世界2(39题2.8万字参考答案)

Java 集合是 Java 编程中至关重要的组成部分&#xff0c;它为开发者提供了丰富、灵活、高效的数据结构和算法。无论是初学者还是有经验的开发者&#xff0c;在使用 Java 进行编程时都会频繁地接触到集合框架。这篇文章将深入探讨 Java 集合的重要性&#xff0c;以及为什么它对于…

SD342X-16Q双偏心软密封蝶阀的选型技巧分享

SD342X-16Q双偏心软密封蝶阀的选型技巧分享 选择SD342X-16Q双偏心软密封蝶阀软密封蝶阀时&#xff0c;需要考虑以下几个事项&#xff1a; 1.流体性质&#xff1a; 了解流体的压力、温度、粘度等特性&#xff0c;选择适合的软密封材料。不同材料对于不同流体具有不同的耐腐蚀性…

Leetcode刷题笔记题解(C++):1971. 寻找图中是否存在路径

思路&#xff1a; 1.建立图集&#xff0c;二维数组&#xff0c;path[0]里面存放的就是与0相连的节点集合 2.用布尔数组来记录当前节点是否被访问过&#xff0c;深度优先会使用到 3.遍历从起点开始能直接到达的点&#xff08;即与起点相邻的点&#xff09;&#xff0c;判断那…

C#使用RabbitMQ-1_Docker部署并在c#中实现简单模式消息代理

介绍 RabbitMQ是一个开源的消息队列系统&#xff0c;实现了高级消息队列协议&#xff08;AMQP&#xff09;。 &#x1f340;RabbitMQ起源于金融系统&#xff0c;现在广泛应用于各种分布式系统中。它的主要功能是在应用程序之间提供异步消息传递&#xff0c;实现系统间的解耦和…

YOLOv8优化策略:轻量化改进 | RepGhost,通过重参数化实现硬件高效的Ghost模块

🚀🚀🚀本文改进:RepGhost,通过重参数化实现硬件高效的Ghost模块,性能优于GhostNet、MobileNetV3等,在移动设备上具有更少的参数和可比的延迟。 🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1.原…

互联网加竞赛 基于深度学习的人脸专注度检测计算系统 - opencv python cnn

文章目录 1 前言2 相关技术2.1CNN简介2.2 人脸识别算法2.3专注检测原理2.4 OpenCV 3 功能介绍3.1人脸录入功能3.2 人脸识别3.3 人脸专注度检测3.4 识别记录 4 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习的人脸专注度…

python爬虫基础

python爬虫基础 前言 Python爬虫是一种通过编程自动化地获取互联网上的信息的技术。其原理可以分为以下几个步骤&#xff1a; 发送HTTP请求&#xff1a; 爬虫首先会通过HTTP或HTTPS协议向目标网站发送请求。这个请求包含了爬虫想要获取的信息&#xff0c;可以是网页的HTML内…

xxl-job之API的方式接入

文章目录 1 xxl-job1.1 简介1.2 分析1.3 学习xxl-job源码1.4 改造项目1.4.1 接口调用1.4.1.1 对接登录接口1.4.1.2 对接执行器接口1.4.1.3 对接任务接口 1.4.2 创建新注解1.4.3 自动注册核心1.4.4 自动装配 1 xxl-job 1.1 简介 xxl-job是一款非常优秀的任务调度中间件&#x…

蓝桥杯-sort排序(上)

sort排序 &#x1f388;1.算法说明&#x1f388;2.例题&#x1f52d;2.1例题一&#x1f52d;2.2例题二&#x1f52d;2.3例题三&#x1f52d;2.4例题四&#x1f52d;2.5例题五&#x1f52d;2.6例题六 &#x1f388;1.算法说明 &#x1f50e;对于一个数组&#xff0c;通过对数组中…