大创项目推荐 目标检测-行人车辆检测流量计数

文章目录

  • 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

前言

🔥 优质竞赛项目系列,今天要分享的是

行人车辆目标检测计数系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程

import cv2import numpy as npimport randomdef load_images(dirname, amout = 9999):img_list = []file = open(dirname)img_name = file.readline()while img_name != '':  # 文件尾img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')img_list.append(cv2.imread(img_name))img_name = file.readline()amout -= 1if amout <= 0: # 控制读取图片的数量breakreturn img_list# 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本def sample_neg(full_neg_lst, neg_list, size):random.seed(1)width, height = size[1], size[0]for i in range(len(full_neg_lst)):for j in range(10):y = int(random.random() * (len(full_neg_lst[i]) - height))x = int(random.random() * (len(full_neg_lst[i][0]) - width))neg_list.append(full_neg_lst[i][y:y + height, x:x + width])return neg_list# wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsizedef computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):hog = cv2.HOGDescriptor()# hog.winSize = wsizefor i in range(len(img_lst)):if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \(img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)gradient_lst.append(hog.compute(gray))# return gradient_lstdef get_svm_detector(svm):sv = svm.getSupportVectors()rho, _, _ = svm.getDecisionFunction(0)sv = np.transpose(sv)return np.append(sv, [[-rho]], 0)# 主程序# 第一步:计算HOG特征neg_list = []pos_list = []gradient_lst = []labels = []hard_neg_list = []svm = cv2.ml.SVM_create()pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')sample_neg(full_neg_lst, neg_list, [128, 64])print(len(neg_list))computeHOGs(pos_list, gradient_lst)[labels.append(+1) for _ in range(len(pos_list))]computeHOGs(neg_list, gradient_lst)[labels.append(-1) for _ in range(len(neg_list))]# 第二步:训练SVMsvm.setCoef0(0)svm.setCoef0(0.0)svm.setDegree(3)criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)svm.setTermCriteria(criteria)svm.setGamma(0)svm.setKernel(cv2.ml.SVM_LINEAR)svm.setNu(0.5)svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?svm.setC(0.01)  # From paper, soft classifiersvm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression tasksvm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第三步:加入识别错误的样本,进行第二轮训练# 参考 http://masikkk.com/article/SVM-HOG-HardExample/hog = cv2.HOGDescriptor()hard_neg_list.clear()hog.setSVMDetector(get_svm_detector(svm))for i in range(len(full_neg_lst)):rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)for (x,y,w,h) in rects:hardExample = full_neg_lst[i][y:y+h, x:x+w]hard_neg_list.append(cv2.resize(hardExample,(64,128)))computeHOGs(hard_neg_list, gradient_lst)[labels.append(-1) for _ in range(len(hard_neg_list))]svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第四步:保存训练结果hog.setSVMDetector(get_svm_detector(svm))hog.save('myHogDector.bin')

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/438056.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

什么是Gitee代码托管服务?怎样用?(码云的使用)

国内代码托管平台 1.网站&#xff1a; Gitee - 基于 Git 的代码托管和研发协作平台

为什么3d合并的模型不能移动---模大狮模型网

当你在3D软件中合并模型后&#xff0c;如果无法移动合并后的模型&#xff0c;可能有以下几个可能的原因&#xff1a; 模型被锁定或冻结&#xff1a;在3D软件中&#xff0c;你可能会将模型锁定或冻结以防止意外的移动或编辑。请确保解锁或解冻模型&#xff0c;这样你就可以自由地…

外汇天眼:Alpha Group International为股票回购计划拨款高达2,000万英镑

Alpha Group International plc&#xff0c;一家为企业和机构提供金融解决方案的公司&#xff0c;宣布计划启动股票回购程序&#xff0c;以购买每股面值为0.2便士的普通股。 该公司已经从其现金储备中拨款高达2,000万英镑用于回购计划。购买的普通股将被保留在公司的资本中。 …

阿里巴巴1688商品详情API:从入门到精通的深入指南(五)

一、引言 阿里巴巴是中国最大的电商平台之一&#xff0c;而1688则是其批发采购平台。近年来&#xff0c;随着电子商务的快速发展&#xff0c;越来越多的企业开始需要从1688平台获取商品详情数据。为了满足这一需求&#xff0c;阿里巴巴提供了1688商品详情API。本文将详细介绍如…

Day02-课后练习1-参考答案(数据类型和运算符)

文章目录 巩固题1、按步骤编写代码&#xff0c;效果如图所示&#xff1a;2、按步骤编写代码&#xff0c;效果如图所示&#xff1a;3、强制类型转换练习&#xff0c;效果如图所示&#xff1a;4、按步骤编写代码&#xff0c;效果如图所示&#xff1a;5、计算时间6、华氏度转摄氏度…

C++STL之map、set的使用和模拟实现

绪论​&#xff1a; “我这个人走得很慢&#xff0c;但是我从不后退。——亚伯拉罕林肯”&#xff0c;本章是接上一章搜索二叉树中红黑树的后续文章&#xff0c;若没有看过强烈建议观看&#xff0c;否则后面模拟实现部分很看懂其代码原理。本章主要讲了map、set是如何使用的&am…

2024阿里云和腾讯云的第一战打响:搭建《幻兽帕鲁》私服游戏

为了搭建《幻兽帕鲁》游戏私服&#xff0c; 2024年阿里云 VS 腾讯云的第一场战争开始了…… 事情是这样的&#xff1a; 1月19日&#xff0c;最离谱新游 《幻兽帕鲁》突然爆火了&#xff0c;这是一款日本开发商展耗费4年开发的冒险类游戏&#xff0c;这款戏一推出就迅速俘获了…

MyBatis框架-ResultMap

文章目录 ResultMapsqlUser.java解决方案**方案一&#xff1a;为列名指定别名 , 别名和java实体类的属性名一致(自动映射)**UserMapper.xmlUserTest.java测试结果 **方案二&#xff1a;使用结果集映射->ResultMap 【推荐】&#xff08;手动映射&#xff09;**测试结果 Resul…

电脑如何调整照片尺寸大小和像素?一键修改图片大小

有时候&#xff0c;我们需要将图片调整为特定的大小&#xff0c;比如制作海报、头像或者上传到网站等&#xff0c;所以修改图片的尺寸和大小是在处理图片时常见的需求&#xff0c;那么电脑如何调整照片尺寸大小和像素呢&#xff1f;今天介绍一个最直接的图片尺寸大小怎么修改的…

深度学习快速入门--7天做项目

深度学习快速入门--7天做项目 0. 引言1. 本文内容2. 深度学习是什么3. 项目是一个很好的切入点4. 7天做项目4.1 第一天&#xff1a;数据整理4.2 第二天&#xff1a;数据处理4.3 第三天&#xff1a;简单神经网络设计4.4 第四天&#xff1a;分析效果与原因4.5 第五天&#xff1a;…

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测 目录 回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-LSSVM【24年…

【Javaweb】只给入门Javaweb的人看!

前言 最近我在B站上用2天的时间迅速刷完了黑马程序员的Javaweb课程&#xff0c;这个课程内容非常多&#xff0c;总共有42个小时的学习内容。然而&#xff0c;对于那些寻找Java后端开发人员岗位的人来说&#xff0c;实际上Javaweb并不是非常重要&#xff0c;只需对其有简单的了…