用C#实现最小二乘法(用OxyPlot绘图)

最小二乘法介绍✨

最小二乘法(Least Squares Method)是一种常见的数学优化技术,广泛应用于数据拟合、回归分析和参数估计等领域。其目标是通过最小化残差平方和来找到一组参数,使得模型预测值与观测值之间的差异最小化。

最小二乘法的原理✨

线性回归模型将因变量 (y) 与至少一个自变量 (x) 之间的关系建立为:

image-20240118105946580

在 OLS 方法中,我们必须选择一个b1和b0的值,以便将 y 的实际值和拟合值之间的差值的平方和最小化。

平方和的公式如下:

image-20240118110247858

我们可以把它看成是一个关于b1和b0的函数,分别对b1和b0求偏导,然后让偏导等于0,就可以得到最小平方和对应的b1和b0的值。

先说结果,斜率最后推导出来如下所示:

截距推导出来结果如下:

don’t worry about that,慢慢推导总是可以弄明白的(不感兴趣可以直接略过):

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

最小二乘法推导2

最小二乘法推导3

用C#实现最小二乘法✨

创建数据点✨

首先创建想要拟合的数据点:

 NDArray? x, y;

x,y为全局变量。

  //使用NumSharp创建线性回归的数据集x = np.arange(0, 10, 0.2);y = 2 * x + 3 + np.random.normal(0, 3, x.size);

使用到了NumSharp,需要为项目添加NumSharp包:

image-20240120100221733

 x = np.arange(0, 10, 0.2);

的意思是x从0增加到10(不包含10),步长为0.2:

image-20240120100455351

np.random.normal(0, 3, x.size);

的意思是生成了一个均值为0,标准差为3,数量与x数组长度相同的正态分布随机数数组。这个数组被用作线性回归数据的噪声。

使用OxyPlot画散点图✨

OxyPlot是一个用于在.NET应用程序中创建数据可视化图表的开源图表库。它提供了丰富的功能和灵活性,使开发者能够轻松地在其应用程序中集成各种类型的图表,包括折线图、柱状图、饼图等。

image-20240120101110294

添加OxyPlot.WindowsForms包:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

将PlotView控件添加到窗体设计器上:

image-20240120101340414

// 初始化散点图数据
var scatterSeries = new ScatterSeries
{MarkerType = MarkerType.Circle,MarkerSize = 5,MarkerFill = OxyColors.Blue
};

表示标志为圆形,标志用蓝色填充,标志的大小为5。

  for (int i = 0; i < x.size; i++){scatterSeries.Points.Add(new ScatterPoint(x[i], y[i]));}

添加数据点。

 PlotModel? plotModel;

将plotModel设置为全局变量。

 // 创建 PlotModelplotModel = new PlotModel(){Title = "散点图"};plotModel.Series.Add(scatterSeries);// 将 PlotModel 设置到 PlotViewplotView1.Model = plotModel;

这样就成功绘制了散点图,效果如下所示:

image-20240120102920929

使用最小二乘法拟合数据点✨

double a = 0;
double c = 0;double x_mean = x?.mean();
double y_mean = y?.mean();//计算a和c
for(int i = 0; i < x?.size; i++) 
{a += (x[i] - x_mean) * (y?[i] - y_mean);c += (x[i] - x_mean) * (x[i] - x_mean);
}//计算斜率和截距
double m = a / c;
double b = y_mean - m * x_mean;//拟合的直线
var y2 = m * x + b;

套用公式就可以,a表示上面斜率公式的上面那部分,c表示上面斜率公式的下面那部分。

double x_mean = x?.mean();
double y_mean = y?.mean();

计算x与y的平均值。

使用OxyPlot画拟合出来的直线✨

 //画这条直线         var lineSeries = new LineSeries{Points = { new DataPoint(x?[0], y2[0]), new DataPoint(x?[-1], y2[-1]) },Color = OxyColors.Red};// 创建 PlotModel         plotModel?.Series.Add(lineSeries);// 为图表添加标题if (plotModel != null){plotModel.Title = $"拟合的直线 y = {m:0.00}x + {b:0.00}";}// 刷新 PlotViewplotView1.InvalidatePlot(true);
 Points = { new DataPoint(x?[0], y2[0]), new DataPoint(x?[-1], y2[-1]) },

画直线只要添加两个点就好了x?[0], y2[0]表示x和y的第一个点,x?[-1], y2[-1]) 表示x和y的最后一个点,使用了NumSharp的切片语法。

画出来的效果如下所示:

image-20240120103737259

C#实现的全部代码:

using NumSharp;
using OxyPlot.Series;
using OxyPlot;
namespace OlsRegressionDemoUsingWinform
{public partial class Form1 : Form{NDArray? x, y;PlotModel? plotModel;public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){//使用NumSharp创建线性回归的数据集x = np.arange(0, 10, 0.2);y = 2 * x + 3 + np.random.normal(0, 3, x.size);// 初始化散点图数据var scatterSeries = new ScatterSeries{MarkerType = MarkerType.Circle,MarkerSize = 5,MarkerFill = OxyColors.Blue};for (int i = 0; i < x.size; i++){scatterSeries.Points.Add(new ScatterPoint(x[i], y[i]));}// 创建 PlotModelplotModel = new PlotModel(){Title = "散点图"};plotModel.Series.Add(scatterSeries);// 将 PlotModel 设置到 PlotViewplotView1.Model = plotModel;}private void button2_Click(object sender, EventArgs e){double a = 0;double c = 0;double x_mean = x?.mean();double y_mean = y?.mean();//计算a和cfor(int i = 0; i < x?.size; i++) {a += (x[i] - x_mean) * (y?[i] - y_mean);c += (x[i] - x_mean) * (x[i] - x_mean);}//计算斜率和截距double m = a / c;double b = y_mean - m * x_mean;//拟合的直线var y2 = m * x + b;//画这条直线         var lineSeries = new LineSeries{Points = { new DataPoint(x?[0], y2[0]), new DataPoint(x?[-1], y2[-1]) },Color = OxyColors.Red};// 创建 PlotModel         plotModel?.Series.Add(lineSeries);// 为图表添加标题if (plotModel != null){plotModel.Title = $"拟合的直线 y = {m:0.00}x + {b:0.00}";}// 刷新 PlotViewplotView1.InvalidatePlot(true);}}
}

用Python实现最小二乘法✨

import numpy as np
import matplotlib.pyplot as plt# 用最小二乘法拟合 y = mx + b# 设置随机数种子以保证结果的可复现性
np.random.seed(0)# 生成一个在[0, 10]区间内均匀分布的100个数作为x
x = np.linspace(0, 10, 100)# 生成y,y = 2x + 噪声,其中噪声是[0, 10)之间的随机整数
y = 2 * x + 5 + np.random.randint(0, 10, size=100)# 计算x和y的均值
x_mean = np.mean(x)
y_mean = np.mean(y)a = 0
c = 0for i in range(x.shape[0]):a += (x[i] - x_mean) * (y[i] - y_mean)c += (x[i] - x_mean) ** 2# 计算斜率和截距
m = a / c
b = y_mean - m * x_mean# 画这条直线
y2 = m * x + b
plt.plot(x, y2, color='red')# 画数据点
plt.scatter(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title(f'y = {m:.2f}x + {b:.2f}')
plt.show()

运行效果如下所示:

image-20240120104300224

总结✨

本文向大家介绍了最小二乘法以及公式推导的过程,并使用C#与Python进行实现。重点介绍了C#中是如何实现的,同时介绍了在C#中如何使用OxyPlot绘图。希望对你有所帮助。

参考✨

1、Understanding Ordinary Least Squares (OLS) Regression | Built In

2、Machine Learning Series-Linear Regression Ordinary Least Square Method - YouTube

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/438210.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【node】Node.js的常用内置模块:

文章目录 一、os模块&#xff1a;【1】常用的OS模块方法包括&#xff1a;【2】案例&#xff1a; 二、path模块&#xff1a;【1】常用的path模块方法包括&#xff1a;【2】案例&#xff1a; 三、url模块&#xff1a;【1】常用的url模块方法包括&#xff1a;【2】案例&#xff1a…

Springboot+Netty搭建基于TCP协议的服务端

文章目录 概要pom依赖Netty的server服务端类Netty通道初始化I/O数据读写处理测试发送消息 并 接收服务端回复异步启动Netty运行截图 概要 Netty是业界最流行的nio框架之一&#xff0c;它具有功能强大、性能优异、可定制性和可扩展性的优点 Netty的优点&#xff1a; 1.API使用简…

超值福利,全是独家特制版软件,功能超凡且完全免费

闲话休提&#xff0c;直接为您呈现四款神仙级别的软件。 1、我的ABC软件工具箱 这款小巧而强大的批量处理办公助手——我的ABC软件工具箱&#xff0c;不仅界面清爽、无弹窗广告&#xff0c;更重要的是&#xff0c;它完全免费&#xff01;这款工具箱将成为您高效办公的得力助手…

【前端web入门第二天】02 表单-input标签-单选框-多选框

表单 文章目录: 1.input标签基本使用 1.1 input标签占位文本1.2 单选框 radio 1.3 多选框 checkbox 作用:收集用户信息。 使用场景: 登录页面注册页面搜索区域 1.input标签基本使用 input标签type属性值不同&#xff0c;则功能不同。 <input type"..."&g…

媒体邀约:怎么吸引总体目标受众?

新闻媒体影响力日益扩大。不论是公司、机构还是其他&#xff0c;都希望能够通过新闻媒体的曝光来吸引更多总体目标受众。要想真正吸引住总体目标受众并非易事&#xff0c;需要一定的方案和方法。下面我们就深入探究媒体邀约推广的真相&#xff0c;共享怎么吸引总体目标受众的方…

课时7:shell基础_shell简介

1.3.1 shell简介 学习目标 这一节&#xff0c;我们从 运维、shell语言、小结 三个方面来学习。 运维 简介 运维是什么&#xff1f;所谓的运维&#xff0c;其实就是公司的内部项目当中的一个技术岗位而已&#xff0c;它主要做的是项目的维护性工作。它所涉及的内容范围非常…

Python判断语句——if语句的基本格式

一、引言 在Python编程语言中&#xff0c;if语句是一种基本的控制流语句&#xff0c;用于根据特定条件执行不同的代码块。它的基本格式相对简单&#xff0c;使得Python代码清晰、易于阅读。下面&#xff0c;我们将深入探讨if语句的基本格式、用法和注意事项。 二、if语句的…

Apipost中API如何调用本地文件

近期版本更新中Apipost推出插件管理&#xff0c;可以直接在预、后执行脚本中调用本地的脚本文件 导入脚本 在「系统设置」—「插件管理」中打开目录将要执行的脚本文件拖入到文件夹下 执行脚本 需要获取请求参数&#xff1a; const requestData request.request_bodys; 在…

netty源码前置一:Nio

NIO算是实现Reactor设计模式&#xff08;单Selector 单工作线程&#xff09;底层window用的是select&#xff0c;linux用的是epoll 网络NIO代码实现&#xff1a; public NIOServer(int port) throws Exception {selector Selector.open();serverSocket ServerSocketChannel.…

H.264与H.265的主要差异

H.265仍然采用混合编解码&#xff0c;编解码结构域H.264基本一致&#xff0c; H.265与H.264的主要不同 编码块划分结构&#xff1a;采用CU (CodingUnit)、PU(PredictionUnit)和TU(TransformUnit)的递归结构。 并行工具&#xff1a;增加了Tile以及WPP等并行工具集以提高编码速…

【Linux】fork()函数

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

如何使用Everything随时随地远程访问本地电脑搜索文件

文章目录 前言1.软件安装完成后&#xff0c;打开Everything2.登录cpolar官网 设置空白数据隧道3.将空白数据隧道与本地Everything软件结合起来总结 前言 要搭建一个在线资料库&#xff0c;我们需要两个软件的支持&#xff0c;分别是cpolar&#xff08;用于搭建内网穿透数据隧道…