数据分析入门指南:用 Python 开启数据之旅

文章目录

  • 前言
  • 发现宝藏
  • 为什么选择 Python 进行数据分析?
  • 准备工作
  • 数据分析基础
    • 1. 数据加载
    • 2. 数据探索
    • 3. 数据清洗
    • 4. 数据可视化
  • 探索更多可能性
  • 好书推荐
  • 总结

前言

为了巩固所学的知识,作者尝试着开始发布一些学习笔记类的博客,方便日后回顾。当然,如果能帮到一些萌新进行新技术的学习那也是极好的。作者菜菜一枚,文章中如果有记录错误,欢迎读者朋友们批评指正。
(博客的参考源码可以在我主页的资源里找到,如果在学习的过程中有什么疑问欢迎大家在评论区向我提出)

发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝藏入口】。

在当今信息爆炸的时代,数据已经成为了我们生活和工作中不可或缺的一部分。从业务决策到科学研究,数据分析都扮演着至关重要的角色。而 Python,作为一种强大且易学的编程语言,已经成为了数据分析的首选工具之一。本篇博客将带你进入数据分析的世界,以 Python 为工具,探索数据的奥秘。

为什么选择 Python 进行数据分析?

Python 之所以成为数据分析的首选语言,有以下几个原因:

  1. 易学易用:Python 的语法简洁清晰,易于上手,即使是没有编程经验的初学者也能迅速掌握。
  2. 丰富的库支持:Python 生态系统中拥有丰富的数据分析库,如 NumPy、Pandas、Matplotlib、Seaborn 等,可以满足各种数据处理、分析和可视化的需求。
  3. 广泛应用: Python 在科学计算、数据挖掘、机器学习等领域应用广泛,拥有庞大的社区和活跃的开发者群体,可以快速解决问题并获取帮助。

准备工作

在开始数据分析之前,我们需要准备好以下工具和环境:

  1. Python 解释器: 在你的计算机上安装 Python 解释器,推荐使用 Anaconda 或 Miniconda,它们自带了常用的数据分析库。
  2. 数据集: 准备一些感兴趣的数据集,可以从 Kaggle、UCI Machine Learning Repository 等网站下载。

数据分析基础

1. 数据加载

使用 Pandas 库可以轻松地加载各种格式的数据,如 CSV、Excel、JSON 等。

import pandas as pd
# 从 CSV 文件加载数据
data = pd.read_csv('data.csv')

2. 数据探索

一旦数据加载完成,我们可以开始对数据进行探索性分析,了解数据的结构、特征和分布情况。

# 查看数据的前几行
print(data.head())
# 获取数据的统计摘要
print(data.describe())
# 查看数据的列名
print(data.columns)
# 统计数据的缺失值
print(data.isnull().sum())

3. 数据清洗

数据清洗是数据分析过程中的重要步骤,包括处理缺失值、异常值和重复值等。

# 处理缺失值
data.dropna(inplace=True)
# 处理重复值
data.drop_duplicates(inplace=True)

4. 数据可视化

数据可视化是理解数据的重要途径,可以使用 Matplotlib 和 Seaborn 库进行数据可视化。

import matplotlib.pyplot as plt
import seaborn as sns
# 绘制柱状图
sns.countplot(x='column_name', data=data)
plt.title('Title of the Plot')
plt.xlabel('X Label')
plt.ylabel('Y Label')
plt.show()

探索更多可能性

以上仅是数据分析的入门介绍,数据分析的领域和技术涵盖广泛,还有更多深入的内容等待你去探索和学习,比如特征工程、机器学习建模等。
通过学习 Python 数据分析,你可以从数据中发现有趣的模式、洞察用户行为、优化业务流程,甚至是开展科学研究。让我们一起踏上数据之旅,探索数据的无限可能!

好书推荐

【京东购买链接 】
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

总结

以上就是关于使用 Python 进行数据分析的入门指南,希望能够为你提供一些启发和帮助。如果你对数据分析有更多兴趣,不妨深入学习,掌握更多高级技术和方法。愿你在数据分析的道路上不断前行,不断进步!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/438431.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言王道第八周一题

Description 初始化顺序表(顺序表中元素为整型),里边的元素是 1,2,3,然后通过 scanf 读取一个元素(假如插入的是 6),插入到第 2 个位置,打印输出顺序表,每个 元素占 3 个…

vuepress搭建个人博客以及部署

vuepress,Vue 驱动的静态网站生成器,以 Markdown 为中心的项目结构,以最少的配置帮助你专注于写作。 vuepress官网 vuepress存在很多主题,也可以自定义设计主题,上传npm使用 这里采用vuepress-theme-hope主题模板进行制…

AIGC专题:2024年金融业生成式AI应用报告

今天分享的是AIGC系列深度研究报告:《AIGC专题:2024年金融业生成式AI应用报告》。 (报告出品方:度小满) 前言 毫无疑问,生成式人工智能是2023年全球最具影响力的创新科技,它代表着一种范式转…

赛氪荣获“2023天津高新技术企业大会支持单位”

1月23日上午,2023天津市高新技术企业大会新闻发布会在天开高教科技园核心区综合服务中心召开,市高企协以及来自高校、企业、社会组织等80余人现场参会。 大会组委会秘书长张博航介绍到:“本次大会将实现自开办以来的多个首次,首次…

GoogLeNet模型详解

模型介绍 GoogLeNet是谷歌工程师设计的深度神经网络结构,于2014年在ImageNet比赛中取得了冠军。它的设计特点在于既有深度,又在横向上拥有“宽度”,并采用了一种名为Inception的核心子网络结构。这个网络名字中的“GoogLeNet”是对LeNet的致…

sql优化的方法

目录 一、准备数据 1.1、创建表结构 1.2、创建存储过程 二、索引介绍 2.1、类型介绍 2.2、建立索引 2.3、建立复合索引 2.4、查看所有建立的索引 2.5、删除索引 三、EXPLAIN分析参数说明 四、SQL优化案例 4.1、避免使用SELECT * 4.2、慎用UNION关键字 4.4、避免使…

响应式架构设计:性能更高更快的架构模式(框架部分后续再完善)

文章目录 一、初识响应式1、什么是Reactive(响应式)2、响应式编程(Reactive Programming)的含义3、响应式编程的特点4、响应式编程的主要模式5、响应式编程的核心元素(1)流(2)传播变…

Nginx 主动检查 被动检查

被动检查 proxy_next_upstream http {upstrean httpget {//max_fail5,失败5词,直接下线 down,//fail_timeout10s, 10s之后 重新上线 up//fail_timeout10s, max_fail5,5次失败在10s内,下线,server IP:80 max_fails5 fail_time…

除毛可以用宠物空气净化器吗?猫用空气净化器质量高的品牌推荐

如今,越来越多的家庭选择养宠物,因为它们给家里带来了温馨和快乐。然而,宠物也可能带来异味和空气中的浮毛,这可能会给我们的健康带来问题,成为一个困扰。 为了解决家里的异味问题,尤其是宠物的排泄物味道…

DMA 和 零拷贝技术 到 网络大文件传输优化

文章目录 DMA 控制器的发展无 DMA 控制器 IO 过程DMA 控制器 传统文件传输性能有多糟糕?如何优化文件传输性能零拷贝技术mmap writesendfileSG-DMA(The Scatter-Gather Direct Memory Access) 零拷贝技术的应用 大文件传输应该用什么方式Pag…

应急响应-流量分析

在应急响应中,有时需要用到流量分析工具,。当需要看到内部流量的具体情况时,就需要我们对网络通信进行抓包,并对数据包进行过滤分析,最常用的工具是Wireshark。 Wireshark是一个网络封包分析软件。网络封包分析软件的…

qtcreator使用qwt库

先配置好.pro文件,再去ui界面拖拽控件 ui界面会更改配置,故顺序错一个,就凉了,重来吧 准备:库,库头文件 库文件:路径如下 头文件:路径如下 鼠标->右键 (有些不用勾…