【机器学习300问】20、什么是神经网络?和深度学习什么关系?

        在学习深度学习的相关知识之前,我们首先得了解什么是神经网络,解开神经网络的神秘面纱后,什么是深度学习的问题也就迎刃而解。我依旧会采用我习惯的方式:先给出例子直观理解,在给出定义深入理解,最后在实际应用中强化理解。

一、什么是神经网络?

(1)感知机就是单个神经元

        看到神经网络自然会想到,这是一个仿生学的概念(模拟动物大脑中的神经网络),既然是一张网必然是无数个点线组成,那么首先了解神经网络最基本的单位(感知机)肯定没错。

两个输入的感知机
两个输入的感知机

        

        图中是一个接收两个输入信号的感知机的例子。x1x2是输入信号, y是输出信号,w1w2权重(wweight的首字母)。图中的○圆圈称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w_{1}x_{1},w_{2}x_{2})神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出1。这也称为“神经元被激活”。这里将这个界限值称为阈值,用符号θ表示。

        写成数学公式的形式如下:

        权重越大说明这个信号越重要。

(2)多层感知机便构成了网络即神经网络

        叠加了多层的感知机,被成为多层感知机,这里面首先就得先弄懂什么是“层”layer

2层神经网络

        上图中的感知机总共由 3层构成,但是因为拥有权重的层实质上只有2层(第0层和第1层之间,第1层和第2层之间),所以称为“2层神经网络”。更简单的记忆方式就是不计算第0层。

  • 0层的两个神经元接收输入信号,并将信号发送至第1层的神经元
  • 1层的神经元将信号发送至第2层的神经元,第2层的神经元输出y

        单层感知机(也称作单层神经网络)本质上是一个线性分类器。它的决策边界是由输入特征的线性组合所确定的,这意味着它只能划分线性可分的数据集。对于非线性可分的数据集,单层感知机无法找到一个适当的决策边界来进行有效的分类。

        多层感知机(也称作神经网络)则能够表示非线性空间。这是因为多层感知机由多层神经元组成,每一层的输出可以作为下一层的输入。在网络中引入非线性激活函数(如sigmoid)之后,即使每一层单独看都是线性的,但多层的非线性变换叠加在一起就可以学习到极其复杂的非线性决策边界,从而解决非线性可分的问题。

(3)神经网络的定义

        神经网络或者叫人工神经网络,它是一种模仿生物神经系统结构和功能的计算模型,由大量的人工神经元及其相互连接构成,用于解决各种机器学习和模式识别问题。在神经网络中,每个神经元都有输入端接收信号,通过加权和及非线性变换(激活函数)处理这些信号,并在其输出端产生响应。神经元之间通过权重连接,形成了多层的网络结构,允许网络进行复杂的模式识别、分类、回归和其他类型的预测任务。

        看完神经网络的定义后,有必要对其中的一些词汇做出解释。

① 神经网络分哪些层?

神经网络的分层
名词解释
输入层接收外部特征的输入
中间层(又叫隐藏层)至少有一个或多个中间层,负责对输入数据进行学习
输出层生成最终的预测结果

        我在这里只介绍最基本的三个层,其他的像是池化层卷积层后面的文章再展开说。

 ② 神经网络到底在学习什么?

参数:权重w和偏置b

        在机器学习中,特征的提取是需要人的参与,倘若特征特别多或者难以人工提取呢?神经网络的出现就是为了解决这个问题。因此神经网络的一个重要性质是它可以自动地从数据中学习到合适的权重参数

③ 一些符号的说明

 

       

符号解释
x_{1}表示第1个输入 
w_{12}^{(1)}上标表示第1层网络的权重,下标表示它来自前一层的第1个节点,输出到后一层的第二个节点
a_{1}^{(1)}表示第一层的第一个节点
b_{1}^{(1)}第1层网络中第1个节点的偏置

二、神经网络和深度学习什么关系?

        深度学习则是神经网络的扩展和深化。传统的神经网络只有两到三层,而深度学习则使用了更深层次的网络结构(通常是十几层或者更多),这也是"深度"一词的由来。深度学习通过这种更深层次的神经网络,可以从原始输入数据中学习到更加复杂和高级的特征,具有更强大的学习和处理能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/438975.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL行格式原理深度解析

MySQL中的行格式(Row Format)是指存储在数据库表中的数据的物理格式。它决定了数据是如何在磁盘上存储的,以及如何在查询时被读取和解析的。MySQL支持多种行格式,每种格式都有其特定的优点和适用场景。 一、前言 MySQL被分为Ser…

opencv——将2张图片合并

效果演示: 带有绿幕的图片的狮子提取出来,放到另一种风景图片里! 1. 首先我们要先口出绿色绿幕,比如: 这里将绿色绿色绿幕先转为HSV,通过修改颜色的明暗度,抠出狮子的轮廓。 代码 &#xff1a…

麒麟系统—— openKylin 安装 Maven

麒麟系统—— openKylin 安装 Maven 一、准备工作1. 确保麒麟系统 openKylin 已经安装完毕。2. 确保 java 已经安装完毕 二、下载Maven三、解压 Maven 与环境配置解压配置环境变量验证 最终:介绍配置的其他参数使用 本文将分享如何在麒麟操作系统 openKylin 上安装…

RK3326系统中集成思必驰音频适配文件

前言 最近本人在RK3326 8.1系统上做定制化,需要对接思必驰平台音频相关接口,同时在系统中集成音频适配文件,踩了很多坑,写这篇文章记录一下。 一、为什么要集成音频适配文件? 当APP(集成…

MS7336MA高清 HD/全高清 FHD 可选择视频运放与视频同轴线控解码

产品简述 MS7336MA 是一颗集成单通道视频放大器与视频同轴线控解 码为一体的芯片,它内部集成 6dB 增益轨到轨输出驱动器以及 10 阶滤波器,允许同一个输入信号在 -3dB 带宽 35MHz 和 55MHz 之间进行选择控制。视频同轴线控解码内部集成一颗高…

PyFlink使用教程,Flink,Python,Java

环境准备 环境要求 Java 11 Python 3.7, 3.8, 3.9 or 3.10文档:https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/docs/dev/python/installation/ 打开 Anaconda3 Prompt > java -version java version "11.0.22" 2024-01-16 LTS J…

数据结构(队列Queue)

文章目录 一、队列1、队列的定义2、队列的顺序实现2.1、初始化2.2、入队2.3、出队2.4、查找2.5、判断队列 满/空 3、队列的链式实现3.1、初始化3.2、入队3.3、出队 4、双端队列 一、队列 1、队列的定义 2、队列的顺序实现 2.1、初始化 //初始化 void InitQueue(SqQueue &Q…

mysql之基本查询

基本查询 一、SELECT 查询语句 一、SELECT 查询语句 查询所有列 1 SELECT *FORM emp;查询指定字段 SELECT empno,ename,job FROM emp;给字段取别名 SELECT empno 员工编号 FROM emp; SELECT empno 员工编号,ename 姓名,job 岗位 FROM emp; SELECT empno AS 员工编号,ename …

Python爬虫解析库安装

解析库的安装 抓取网页代码之后,下一步就是从网页中提取信息。提取信息的方式有多种多样,可以使用正则来提取,但是写起来相对比较烦琐。这里还有许多强大的解析库,如 lxml、Beautiful Soup、pyquery 等。此外,还提供了…

【开源】JAVA+Vue.js实现电子元器件管理系统

目录 一、摘要1.1 项目简介1.2 项目录屏 二、研究内容三、界面展示3.1 登录&注册&主页3.2 元器件单位模块3.3 元器件仓库模块3.4 元器件供应商模块3.5 元器件品类模块3.6 元器件明细模块3.7 元器件类型模块3.8 元器件采购模块3.9 元器件领用模块3.10 系统基础模块 四、…

java自动化之创建自动化框架项目(第一天)

1.前言 idea版本为2023.2 java版本为17.0.9 技术栈: javase:封装、泛型、反射、jdbc等 testng:开源测试框架,是从Junit继承而来 httpclient:java提供的与服务端http接口进行交互的库 fastjson:处理js…

分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别

分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别 目录 分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现SCN-Adaboost随机配置网…