题目链接:235. 二叉搜索树的最近公共祖先
题目描述
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8 输出: 6 解释: 节点2
和节点8
的最近公共祖先是6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4 输出: 2 解释: 节点2
和节点4
的最近公共祖先是2
, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
- 所有节点的值都是唯一的。
- p、q 为不同节点且均存在于给定的二叉搜索树中。
文章讲解:代码随想录
视频讲解:二叉搜索树找祖先就有点不一样了!| 235. 二叉搜索树的最近公共祖先_哔哩哔哩_bilibili
题解1:递归法
思路:自顶向下在二叉搜索树查找第一个节点值在 p 和 q 的中间的节点,这个节点即为 p 和 q 的最近祖先。
/*** Definition for a binary tree node.* function TreeNode(val) {* this.val = val;* this.left = this.right = null;* }*//*** @param {TreeNode} root* @param {TreeNode} p* @param {TreeNode} q* @return {TreeNode}*/
var lowestCommonAncestor = function(root, p, q) {if (!root) {return null;}if (p.val > q.val) {const _ = p;p = q;q = _;}if (root.val < p.val) {return lowestCommonAncestor(root.right, p, q);}if (root.val > q.val) {return lowestCommonAncestor(root.left, p, q);}return root;
};
分析:时间复杂度为 O(logn),空间复杂度为 O(logn)。
题解2:迭代法
思路:二叉搜索树查询的迭代法。
/*** Definition for a binary tree node.* function TreeNode(val) {* this.val = val;* this.left = this.right = null;* }*//*** @param {TreeNode} root* @param {TreeNode} p* @param {TreeNode} q* @return {TreeNode}*/
var lowestCommonAncestor = function(root, p, q) {if (p.val > q.val) {const _ = p;p = q;q = _;}while (root) {if (root.val < p.val) {root = root.right;continue;}if (root.val > q.val) {root = root.left;continue;}return root;}return root;
};
分析:时间复杂度为 O(logn),空间复杂度为 O(1)。
收获
进一步了解了二叉搜索树的特性,比一个节点的值小的值一定在它的左子树上,比它大的值一定在它的右子树上。