接前一篇文章:《PCI Express体系结构导读》随记 —— 第II篇 第4章 PCIe总线概述(2)
4.1 PCIe总线的基础知识
与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为数据发送端和数据接收端。PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。PCIe总线使用的层次结构与网络协议栈较为类似。
4.1.2 PCIe总线使用的信号
PCIe设备使用两种电源信号供电,分别是Vcc与Vaux,其额定电压为3.3V。其中Vcc为主电源,PCIe设备使用的主要逻辑模块均使用Vcc供电,而一些与电源管理相关的逻辑使用Vaux供电。在PCIe设备中,一些特殊的寄存器通常使用Vaux供电,如Sticky Register,此时即使PCIe设备的Vcc被移除,这些与电源管理相关的逻辑状态和这些特殊寄存器的内容也不会发生改变。
在PCIe总线中,使用Vaux的主要原因是为了降低功耗和缩短系统恢复时间。因为Vaux在多数情况下并不会被移除,因此当PCIe设备的Vcc恢复后,该设备不用重新恢复使用Vaux供电的逻辑,从而设备可以很快地恢复到正常工作状状态。
PCIe链路的最大宽度为×32,但是在实际应用中,×32的链路宽度极少使用。在一个处理器系统中,一般提供×16的PCIe插槽,并使用PETp0~15、PETn0~15和PERp0~15、PERn0~15共64根信号线组成32对差分信号,其中16对PETxx信号用于发送链路,另外16对PERxx信号用于接收链路。除此之外PCIe总线还使用了下列辅助信号。
(1)PERST#信号
该信号为全局复位信号,由处理器系统提供,处理器系统需要为PCIe插槽和PCIe设备提供该复位信号。PCIe设备使用该信号复位内部逻辑。当该信号有效时,PCIe设备将进行复位操作。PCIe总线定义了多种复位方式,其中Cold Reset和Warm Reset这两种复位方式的实现与该信号有关。
(2)REFCLK+和REFCLK-信号
在一个处理器系统中,可能含有许多PCIe设备,这些设备可以作为Add-In卡与PCIe插槽连接,也可以作为内置模块,与处理器系统提供的PCIe链路直接相连,而不需要经过PCIe插槽。PCIe设备与PCIe插槽都具有REFCLK+和REFCLK-信号,其中PCIe插槽使用这组信号与处理器系统同步。
在一个处理器系统中,通常采用专用逻辑向PCIe插槽提供REFCLK+和REFCLK-信号,如图4-2所示:
其中100Mhz的时钟源由晶振提供,并经过一个“一推多”的差分时钟驱动器生成多个同相位的时钟源,与PCIe插槽一一对应连接。
PCIe插槽需要使用参考时钟,其频率范围为100MHz±300ppm。处理器系统需要为每一个PCIe插槽、MCH(Memory Controller Hub)、ICH(I/O Controller Hub)和Switch提供参考时钟。而且要求在一个处理器系统中,时钟驱动器产生的参考时钟信号到每一个PCIe插槽(MCH、ICH和Swith)的距离差在15英寸之内。通常信号的传播速度接近光速,约为6英寸/ns,由此可见,不同PCIe插槽间REFCLK+和REFCLK-信号的传送延时差约为2.5ns(15/6=2.5)。
当PCIe设备作为Add-In卡连接在PCIe插槽时,可以直接使用PCIe插槽提供的REFCLK+和REFCLK-信号,也可以使用独立的参考时钟,只要这个参考时钟在100MHz±300ppm范围内即可。内置的PCIe设备与Add-In卡在处理REFCLK+和REFCLK-信号时使用的方法类似,但是PCIe设备可以使用独立的参考时钟,而不使用REFCLK+和REFCLK-信号。
在PCIe设备配置空间的Link Control Register中,含有一个“Common Clock Configuration”位。当该位为1时,表示该设备与PCIe链路的对端设备使用“同相位”的参考时钟;如果为0,表示该设备与PCIe链路的对端设备使用的参考时钟是异步的。在PCIe设备中,“Common Clock Configuration”位的缺省值为0,此时PCIe设备使用的参考时钟与对端设备没有任何联系,PCIe链路两端设备使用的参考时钟可以异步设置。这个异步时钟设置方法对于使用PCIe链路进行远程连接时尤为重要。
在一个处理器系统中,如果使用PCIe链路进行机箱到机箱间的互连,因为参考时钟可以异步设置,机箱到机箱之间进行数据传送时仅需要差分信号线即可,而不需要参考时钟,从而极大降低了连接难度。
本节内容较多,更多信号的介绍请看下回。