【C++入门到精通】特殊类的设计 | 单例模式 [ C++入门 ]

在这里插入图片描述

阅读导航

  • 引言
  • 一、设计模式概念(了解)
  • 二、单例模式
    • 1. 饿汉模式
      • (1)概念
      • (2)模拟实现
      • (3)优缺点
      • (4)适用场景
    • 2. 懒汉模式
      • (1)概念
      • (2)模拟实现
        • 🚩思路一(双检查加锁,常规思路)
        • 🚩思路二(使用静态局部变量的方式来实现单例模式)
      • (3)优缺点
      • (4)适用场景
  • 温馨提示

引言

在面向对象编程中,特殊类是指具有特定属性或限制的类,这些属性或限制使其在设计和使用上与常规类不同。在上一篇文章中,我们讨论了一些特殊类,如只能在堆上创建对象的类、只能在栈上创建对象的类以及禁止拷贝和继承的类。

在本文中,我们将继续探讨特殊类的设计,着重介绍单例模式。单例模式是一种常见的设计模式,它确保一个类只有一个实例,并提供了全局访问点。在许多情况下,我们需要确保只有一个对象来协调系统操作或管理共享资源,而单例模式正是解决这类问题的理想选择

本文将深入研究单例模式的原理和实现方式。我们将介绍几种常见的单例模式实现方法,包括饿汉式、懒汉式、双重检查锁定和静态内部类。我们将详细讨论每种实现方法的优缺点,并提供相应的示例代码。让我们一起探索单例模式的精髓吧!

一、设计模式概念(了解)

设计模式是一种被广泛接受和应用的软件开发经验总结,它提供了解决常见问题的可重用方案。设计模式帮助开发人员以一种可靠、灵活和可维护的方式构建软件系统。

设计模式的概念最早由计算机科学家埃里希·伽玛Erich Gamma)等人在1994年的著作《设计模式:可复用面向对象软件的基础》中引入。该书提出了23种经典的设计模式,这些模式分为三大类:创建型模式、结构型模式和行为型模式。

每种设计模式都有其特定的应用场景和解决方案,开发人员可以根据具体需求选择适当的模式来解决问题。设计模式不仅提供了一种通用的解决方案,还促进了代码的可读性、可维护性和可扩展性。

然而,设计模式并非万能药,过度使用或错误使用设计模式可能导致代码变得复杂和难以理解。因此,在应用设计模式时,开发人员需要谨慎权衡,并结合实际情况做出决策。

总之,设计模式是一种帮助开发人员解决常见问题的工具,它提供了一套经过验证的解决方案。通过学习和应用设计模式,开发人员可以提高软件系统的质量和可维护性,从而更加高效地开发出优秀的软件。使用设计模式的目的:为了代码可重用性、让代码更容易被他人理解、保证代码可靠性。 设计模式使代码编写真正工程化;设计模式是软件工程的基石脉络,如同大厦的结构一样

二、单例模式

一个类只能创建一个对象,即单例模式,该模式可以保证系统中该类只有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。比如在某个服务器程序中,该服务器的配置信息存放在一个文件中,这些配置数据由一个单例对象统一读取,然后服务进程中的其他对象再通过这个单例对象获取这些配置信息,这种方式简化了在复杂环境下的配置管理。

⭕单例模式有两种实现模式:饿汉模式懒汉模式,下面我会一个一个的向大家介绍

1. 饿汉模式

(1)概念

饿汉模式是单例模式的一种实现方式,它在类加载时就创建唯一的实例对象,并通过静态方法提供全局访问点。简单来说就是不管你将来用不用,程序启动时就创建一个唯一的实例对象

🍪特点

  • 在类加载时就创建实例对象,因此可以保证实例的唯一性。
  • 通过静态方法提供全局访问点,方便其他代码获取该实例。
  • 线程安全,由于在类加载时创建实例,因此不需要考虑多线程并发访问的问题。

(2)模拟实现

// 饿汉模式:一开始(main函数之前)就创建对象
class Singleton
{
public:// 静态方法,返回唯一实例对象的地址static Singleton* GetInstance(){return _ins;}// 向字符串向量中添加元素,保证线程安全void Add(const string& str){_mtx.lock();    // 获取互斥锁_v.push_back(str);  // 执行操作_mtx.unlock();  // 释放互斥锁}// 打印字符串向量中的所有元素,保证线程安全void Print(){_mtx.lock();    // 获取互斥锁for (auto& e : _v){cout << e << endl;}cout << endl;_mtx.unlock();  // 释放互斥锁}private:// 构造函数私有化,禁止外部创建对象Singleton(){}// 防拷贝构造和赋值运算符,保证实例的唯一性Singleton(const Singleton& s) = delete;Singleton& operator=(const Singleton& s) = delete;private:mutex _mtx;         // 互斥锁,保证线程安全vector<string> _v;  // 字符串向量,存储数据static Singleton* _ins; // 唯一实例对象的地址
};// 初始化静态成员变量
Singleton* Singleton::_ins = new Singleton();

以上代码实现了一个简单的使用饿汉模式实现的线程安全的单例类。它在类加载时就创建了唯一的实例对象,并提供了全局访问点,适用于需要在整个应用程序中共享一个实例对象的场景。同时,该类的实现还保证了多线程并发访问时的线程安全性,避免了数据竞争和死锁等问题。

(3)优缺点

  • 优点

    1. 实现简单直观,代码易于理解
    2. 线程安全,不需要额外的同步处理,适合在多线程环境中使用。
    3. 对象的创建是在类加载时完成的,可以避免线程安全问题和延迟加载的复杂性
  • 缺点

    1. 在程序运行期间始终存在实例对象,可能会造成资源浪费
    2. 如果该实例对象的创建过程耗时较长,会导致应用程序启动变慢
    3. 不支持延迟加载,无法根据实际需要来创建实例

(4)适用场景

  • 对象的创建过程简单且耗时较短的情况,适合使用饿汉模式。
  • 需要在整个应用程序中共享一个实例对象的情况,适合使用饿汉模式。
  • 在多线程环境下需要保证实例的唯一性和线程安全的情况,适合使用饿汉模式。

总的来说:饿汉模式是一种简单有效的单例模式实现方式,适合于对象创建耗时较短、且需要全局访问的情况。但在实际应用中,需要根据具体需求和性能要求选择适当的单例模式实现方式

2. 懒汉模式

(1)概念

懒汉模式是指在需要时才创建实例对象的单例模式在懒汉模式中,实例对象的创建被延迟到第一次使用时,而不是在程序启动时就立即创建。这样可以避免在程序启动时创建不必要的实例对象,节省系统资源

如果单例对象的构造过程耗时且资源占用较多,例如加载插件、初始化网络连接或读取文件等操作,同时在程序运行过程中可能并不经常使用该对象,那么在程序启动时立即进行初始化会导致启动速度缓慢。因此,在这种情况下,采用懒汉模式(延迟加载)是更好的选择

⭕懒汉模式允许在需要使用该对象时才创建实例,避免了不必要的资源浪费,提高了程序性能。通过懒汉模式,可以延迟加载单例对象,无需在程序启动时进行初始化,从而避免了启动时的缓慢问题。

(2)模拟实现

🚩思路一(双检查加锁,常规思路)
class Singleton
{
public:static Singleton* GetInstance(){// 双检查加锁,提高效率if (_ins == nullptr)  // 第一次检查{_imtx.lock();  // 加锁if (_ins == nullptr)  // 第二次检查,确保线程安全{_ins = new Singleton;  // 创建单例对象}_imtx.unlock();  // 解锁}return _ins;}// 显示释放单例对象static void DelInstance(){_imtx.lock();  // 加锁if (_ins){delete _ins;  // 释放单例对象_ins = nullptr;  // 将指针置为空}_imtx.unlock();  // 解锁}// 内部类:用于单例对象的资源回收和持久化class GC{public:~GC(){DelInstance();  // 调用DelInstance()函数进行资源回收和持久化}};// 内部静态成员变量,用于实现单例模式static Singleton* _ins;static mutex _imtx;  // 互斥锁,保证线程安全// 添加数据到vector中void Add(const string& str){_vmtx.lock();  // 加锁_v.push_back(str);  // 添加数据到vector中_vmtx.unlock();  // 解锁}// 输出vector中的数据void Print(){_vmtx.lock();  // 加锁for (auto& e : _v){cout << e << endl;  // 输出vector中的数据}cout << endl;_vmtx.unlock();  // 解锁}// 析构函数,用于实现单例对象的持久化~Singleton(){// 比如要求程序结束时,将数据写到文件,单例对象析构时持久化就比较好}private:// 私有构造函数,限制类外部创建对象Singleton(){}// 防拷贝Singleton(const Singleton& s) = delete;Singleton& operator=(const Singleton& s) = delete;mutex _vmtx;  // 互斥锁,保证线程安全vector<string> _v;  // 存储数据的vectorstatic GC _gc;  // 内部类对象,用于单例对象析构时进行资源回收和持久化
};// 初始化静态成员变量
Singleton* Singleton::_ins = nullptr;
mutex Singleton::_imtx;
Singleton::GC Singleton::_gc;
🚩思路二(使用静态局部变量的方式来实现单例模式)
class Singleton
{
public:// 获取单例对象的接口函数static Singleton* GetInstance(){// 使用静态局部变量实现单例模式,保证线程安全// C++11之前,这里不能保证初始化静态对象的线程安全问题// C++11之后,这里可以保证初始化静态对象的线程安全问题static Singleton inst;return &inst;}// 添加数据到vector中void Add(const string& str){// 加锁,保证线程安全_vmtx.lock();// 添加数据到vector中_v.push_back(str);// 解锁,保证线程安全_vmtx.unlock();}// 输出vector中的数据void Print(){// 加锁,保证线程安全_vmtx.lock();// 遍历vector,输出其中的元素for (auto& e : _v){cout << e << endl;}cout << endl;// 解锁,保证线程安全_vmtx.unlock();}// 析构函数,用于实现单例对象的持久化~Singleton(){// 比如要求程序结束时,将数据写到文件,单例对象析构时持久化就比较好}private:// 私有构造函数,限制类外部创建对象Singleton(){cout << "Singleton()" << endl;}// 防拷贝Singleton(const Singleton& s) = delete;Singleton& operator=(const Singleton& s) = delete;private:mutex _vmtx;  // 互斥锁,保证线程安全vector<string> _v;  // 存储数据的vector
};

这段代码是使用静态局部变量的方式来实现单例模式。

🚨🚨注意:在 C++11 之前,使用静态局部变量的方式需要注意线程安全问题,因为静态局部变量的初始化只会在第一次调用时进行,如果有多个线程同时调用,可能会导致不同步的问题。但在 C++11 之后,静态局部变量的初始化是线程安全的,因此可以放心使用

(3)优缺点

  • 优点

    1. 延迟加载:懒汉模式在需要时才创建实例对象,避免了在程序启动时的资源浪费。这对于资源消耗较大的对象特别有用。
    2. 节省系统资源:由于实例对象的创建被延迟到需要时,懒汉模式可以节省系统资源,提高程序的性能。
    3. 线程安全:通过双重判断锁机制,懒汉模式可以在多线程环境下保证线程安全性。
  • 缺点

    1. 复杂性增加:相比饿汉模式,懒汉模式的实现相对复杂,需要考虑线程安全性问题。
    2. 性能损耗:在多线程环境下,由于需要进行双重判断锁机制,可能会导致一定的性能损耗。

(4)适用场景

  • 对象创建耗时较长或占用较多资源:懒汉模式可以避免在程序启动时创建不必要的实例对象,节省系统资源。
  • 需要延迟加载的场景:如果单例对象在程序运行的早期并不会被频繁使用,而只有在特定条件下才会被需要,那么懒汉模式是一个合适的选择。
  • 多线程环境下需要保证线程安全性:通过双重判断锁机制,懒汉模式可以在多线程环境下保证线程安全性,避免多个线程同时创建多个实例对象。

温馨提示

感谢您对博主文章的关注与支持!另外,我计划在未来的更新中持续探讨与本文相关的内容,会为您带来更多关于C++以及编程技术问题的深入解析、应用案例和趣味玩法等。请继续关注博主的更新,不要错过任何精彩内容!

再次感谢您的支持和关注。期待与您建立更紧密的互动,共同探索C++、算法和编程的奥秘。祝您生活愉快,排便顺畅!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/442845.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

充电桩项目实战:搞定多数据源!

你好&#xff0c;我是田哥 最近&#xff0c;我在对充电桩项目进行微服务升级中&#xff0c;既然是项目升级&#xff0c;难免会遇到各种各样的问题。比如&#xff1a;分布式事务问题、多数据源问题、分布式锁问题等。 项目技术栈&#xff1a; SpringSpring BootSpring Cloud Ali…

在线摸头GIF生成系统源码

在线摸头GIF在线生成器html网页源码&#xff0c;可以点击选择文件按钮&#xff0c;或者直接将图片拖入&#xff0c;即可生成导出

GPIO中断

1.EXTI简介 EXTI是External Interrupt的缩写&#xff0c;指外部中断。在嵌入式系统中&#xff0c;外部中断是一种用于处理外部事件的机制。当外部事件发生时&#xff08;比如按下按钮、传感器信号变化等&#xff09;&#xff0c;外部中断可以立即打断正在执行的程序&#xff0…

十一、常用API——练习

常用API——练习 练习1 键盘录入&#xff1a;练习2 算法水题&#xff1a;练习3 算法水题&#xff1a;练习4 算法水题&#xff1a;练习5 算法水题&#xff1a; 练习1 键盘录入&#xff1a; 键盘录入一些1~100之间的整数&#xff0c;并添加到集合中。 直到集合中所有数据和超过2…

Qt Excel读写 - QXlsx的安装配置以及测试

Qt Excel读写 - QXlsx的安装配置以及测试 引言一、安装配置二、简单测试 引言 Qt无自带的库处理Excel 文件&#xff0c;但可通过QAxObject 借助COM接口进行Excel的读写1。亦可使用免费的开源第三方库&#xff1a;QXlsx&#xff0c;一个基于Qt库开发的用于读写Microsoft Excel文…

Java中Date时间类的使用

目录 一、java.util.Date实例化介绍 一&#xff09;、Date对象实例化 二&#xff09;设置Date对象指定日期 &#xff1a; 三&#xff09;将日期格式化输出为中文状态 二、方法介绍 三、方法演示 一、java.util.Date实例化介绍 一&#xff09;、Date对象实例化 //使用无参构造…

Day01_变量和数据类型(注释,关键字,标识符,数据类型,字面量,变量,常量,进制,计算机存储单位,Java的基本数据类型的存储范围,计算机如何表示数据)

文章目录 JavaSE_Day01 变量和数据类型学习目标1.1 注释&#xff08;*comment*&#xff09;&#xff08;掌握&#xff09;1.2 关键字&#xff08;*keyword*&#xff09;&#xff08;掌握&#xff09;1.3 标识符( identifier)&#xff08;掌握&#xff09;1.3.1 标识符的命名规则…

如果我要访问一个网址,那么在网络中会有哪些过程

访问一个网址是我们日常网络使用中非常常见的操作&#xff0c;背后涉及到一系列精密而复杂的步骤。这个过程包括DNS解析、建立TCP连接、发起HTTP请求、服务器处理请求、服务器响应、浏览器渲染等环节。在这篇文章中&#xff0c;我们将深入探讨这些步骤&#xff0c;并解释它们在…

JVM 内存模型

1 什么是 JVM 内存模型 JVM 需要使用计算机的内存&#xff0c;Java 程序运行中所处理的对象或者算法都会使用 JVM 的内 存空间&#xff0c;JVM 将内存区划分为 5 块&#xff0c;这样的结构称之为 JVM 内存模型。 2 JVM 为什么进行内存区域划分 随着对象数量的增加&#xff…

“减半倒数80天”!比特币18个月后将飙涨四倍!但多数矿企短期面临亏损?

随着比特币现货ETF的顺利推出&#xff0c;比特币的另一个潜在的催化剂就是即将到来的第四次减半。据Bitcoin Block Half最新数据&#xff0c;目前距离比特币减半仅剩余约80天&#xff0c;预计将在今年4月22日发生&#xff0c;届时&#xff0c;每个区块的比特币奖励将从当前的6.…

常见分类网络的结构

VGG16 图片来自这里 MobilenetV3 small和large版本参数,图片来着这里 Resnet 图片来自这里

PCB设计10条重要布线原则(学习笔记)

文章目录 一、连线精简二、避免走直角线三、差分走线四、蛇形走线五、圆滑走线六、数字与模拟分开七、3W原则八、20H原则九、铜箔承载电流十、过孔承载电流 一、连线精简 尽量用最短的路径去布线 1、可以省资源 2、信号差损少 3、线能不拐弯就不拐弯 4、能不换层就不换层 二…