CodeFuse新开源模型荣登Big Code评测榜首!

使用多任务高效微调框架MFTCoder,以DeepSeek-Coder-33b模型为底座,微调获得的CodeFuse-DeepSeek-33b模型在Big Code Models Leaderboard代码大模型榜单上以43.58% WinRate成为新晋榜首,同时模型在NLP任务上也取得了很好的表现。本文我们将介绍该模型的得来和使用,包括训练数据、训练超参设置、模型评测效果以及如何获取该模型和基于它继续微调。我们已经在HuggingFace和ModelScope开放了模型下载(下载地址在文末),并同步提供了4bit量化版本供大家直接部署到生产环境。

图1: Big Code Models LeaderBoard榜单截图(截取时间2024-01-30)。Big Code Models Leaderboardhttps://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)是由HuggingFace BigCode团队维护的代码大模型榜单,是代码大模型领域比较权威的评测榜单。

多任务微调MFT

我们选择以DeepSeek-Coder-33b模型为底座,使用多任务微调框架MFTCoder对5个下游任务数据进行微调,得到CodeFuse-DeepSeek-33b模型。以下将更为详细地进行介绍。

训练数据

本次训练我们设置了5个下游任务,如下表1所示,包括代码补全任务、文本生成代码任务、单测生成任务、自然语言表述对齐任务和代码练习题任务,共约168万样本数据。得益于我们开源的多任务微调框架MFTCoder,这些下游任务能一定程度上相互促进,比直接将所有任务数据混合为一后微调表现更优。

表1: 下游任务训练数据统计

序号

MFT下游任务

任务能力

#Samples 

1

单测用例生成

给定函数级代码生成单元测试用例

390,393

2

代码补全

根据前文补全代码(方法级)

192,547

3

文本生成代码

基于文本描述生成功能代码

66,862

4

NLP表述对齐

增强NLP理解能力

951,278

5

代码练习题 (JAVA/CPP/GO)

基于文本描述生成基础功能代码

82,603

#Total

1,683,683

关键超参设置

本次微调使用的是我们已经开源的多任务微调框架MFTCoder(https://github.com/codefuse-ai/MFTCoder/tree/main/mftcoder_accelerate),MFTCoder支持多模型适配(包括Llama 1/2、CodeLlama、Qwen、Baichuan 2、ChatGLM 2/3、CodeGeex 2、GPT-NEOX、Mistral、DeepSeek等)、多任务并行、多种均衡Loss设计、PEFT(Lora和QLora)高效微调,此前已被采纳为Qwen Code AI竞赛初赛推荐微调框架(通义千问AI挑战赛 - Code Qwen能力算法赛道_算法大赛_赛题与数据_天池大赛-阿里云天池的赛题与数据)。本次训练使用的关键超参设置如下表2所示,更多详细的参数说明可参考https://github.com/codefuse-ai/MFTCoder/tree/main/mft_peft_hf#32-loraqlora

表2: MFTCoder微调关键超参设置及解释

参数名称

参数值

简要解释

data_split

"98,2,0"

98%数据用于训练,2%用于验证

padding_mode

"padding"

使用动态填充模式,即每张卡每个batch大小是由每次其中的最长者动态决定而不是固定大小。另一种可选数据模式是"pack"。

dynamic_padding

True

weighted_loss_mode

"case3"

使用数据均衡Loss函数,更多细节可见论文https://arxiv.org/abs/2311.02303

peft_type

"qlora"

采取QLora 4bit量化微调模式

quantization

"4bit"

lora_rank

192

决定可训练参数比例

lora_alpha

32

per_device_train_batch_size

4

训练时单卡batch大小

per_device_eval_batch_size

4

验证时单卡batch大小

learning_rate

5e-5

初始学习率

min_lr

1e-6

最小学习率

gradient_accumulation_steps

1

梯度累积步数,如果为2,则每累积2步再更新参数,资源不足是一种间接增加global batch size的方式

world_size

64

GPU卡数,使用64张A100/A100卡

evalation_steps

500

每500步验证一次

checkpointing_steps

500

每500步保存一次检查点

num_train_epochs

10

最大训练轮数,最大10轮

early_stopping

True

开启early-stopping机制,即当连续3个检查点的eval loss均比倒数第4个检查点的eval loss大时终止训练

early_stopping_stall_num

3

使用前述训练数据和配置,经过156.5小时,模型在完成5.09 Epochs训练后触发Early-Stopping策略后终止。

模型效果

我们从代码能力和NLP能力两个方面对训练获得的CodeFuse-DeepSeek-33b进行了测试,pass@1测试均采用greedy解码模式(即doSample=False, num_beams=1, num_return_sequences=1)。

代码能力

我们选取了常用的代码评测集对模型进行评测,首先我们使用自己的CodeFuse-Evaluation评测框架(https://github.com/codefuse-ai/codefuse-evaluation)对模型在HumanEval-X(含HumanEval)和MBPP测试集上的表现进行了测试并与CodeFus此前微调过的模型进行了比较,如下表3和表4所示。

CodeFuse-DeepSeek-33b在HumanEval上pass@1指标值为78.65%、在MBPP上为71%(zero-shot),两项平均为74.83%,略高于DeepSeek-Coder-Instruct-33B

CodeFuse-DeepSeek-33b在多语言评测集HumanEval-X上pass@1指标值平均为67.07%,比此前我们开放的CodeFuse-CodeLlama-34b模型高6.69%,在具体各种语言上高出3.48%~12.19%不等

表3: CodeFuse-DeepSeek-33b模型与其他开源底座模型及微调模型在HumanEval和MBPP上的对比

表4: CodeFuse-DeepSeek-33b模型与其他开源底座模型及MFT微调模型在HumanEval-X上的对比

由于不同评测框架在代码后处理和生成终止条件(Stop Words)等方面常存在差异,除了用我们自己的CodeFuse-Evaluation评测框架,我们也用代码大模型榜单Big Code Models LeaderBoard所用的开源评测框架bigcode-evaluation-harness (https://github.com/bigcode-project/bigcode-evaluation-harness)进行了评测,并与榜单上的模型进行了比较。榜单会测试模型在Python代码补全测试集HumenEval和多语言代码补全测试集MultiPL-E共12种语言上的表现,并根据各语言表现进行WinRate排序。(结果复现代码地址:https://github.com/twelveand0/bigcode-evaluation-harness)

表5: 采用bigcode-evaluation-harness评测CodeFuse-DeepSeek-33b模型后的新榜单

如表5所示,CodeFuse-DeepSeek-33b模型的WinRate为43.58%,超过原榜首DeepSeek-Coder-33b-instruct。在HumanEval评测集上,CodeFuse-DeepSeek-33b表现不如DeepSeek-Coder-33b-instruct,但在其他8种语言(包括Java和JS等)上超过后者,均值(Average Score)亦超过后者1.7%

NLP通用能力

对于NLP通用能力测试,我们参照OpenCompass选择了18个评测集,包括语言能力(AFQMC、CHID、Wic、WSC)、推理能力(COPA、CMNLI、OCNLI、Ax-b、Ax-g、RTE)、理解能力(CSL、C3、EPRSTMT)、学科综合能力(MMLU、C-Eval、ARC-c)、代码能力(HumanEval、MBPP)。对于每个模型,我们会使用生成式和PPL方式计算每个指标,并在每个维度上选取两种方式中较高的值作为指标值。

图2: CodeFuse-DeepSeek-33b NLP通用能力雷达图

CodeFuse-DeepSeek-33b模型的评测结果如图3雷达图所示,我们将其与底座模型DeepSeek-Coder-33b和DeepSeek通用模型DeepSeek-67b-Chat进行了对比。从图中可以看出,相较于底座模型DeepSeek-Coder-33b,CodeFuse-DeepSeek-33b在所有维度上均有正向提升;相较于我们此前开源的CodeFuse-CodeLlama-34b,CodeFuse-DeepSeek-33b在绝大多数维度上表现更优;相较于通用模型DeepSeek-67b-Chat,CodeFuse-DeepSeek-33b在语言能力、代码能力和理解能力上整体表现更优,在推理能力上表现稍差,在学科综合能力上差距较大。考虑到模型参数规模差距和底座目标功能类型差异,我们认为CodeFuse-DeepSeek-33b已经表现很好。

模型INT4量化

为了便于直接部署投入生产,我们同步提供了CodeFuse-DeepSeek-33b-INT4量化版本。对于量化后的模型,我们测试了它的代码能力,如表5所示,量化后模型在代码补全任务上只有微弱降幅。

表5:模型量化前后在HumanEval-X和MBPP上的指标对比

Model

HumanEval-X

MBPP

Python

Java

C++

JS

Go

CodeFuse-DeepSeek-33b

78.65%

67.68%

65.85%

67.07%

56.10%

71.0%

CodeFuse-DeepSeek-33b-INT4

78.05%

68.29%

62.19%

64.63%

55.49%

此外,我们测试了该模型实际部署后的性能。测试环境为单张A10(24G显存)、部署框架为NVIDIA开源的tensorRT。测试结果具体如表6所示:

表6: CodeFuse-DeepSeek-33b-INT4在单张A10的推理性能

模型版本

CodeFuse-DeepSeek-33b

推理速度指标

Tokens/s

模型并行/gpu型号

单卡A10

量化格式

int4  

输入/输出长度
(batch_size=1)

16/8

21.7

64/32

21.5

256/128

21.1

1024/512

20.5

模型下载试用

我们开放了量化前后2个模型的下载,提供了推理格式和推理示例,并说明了如何在此基础上继续微调。

下载

我们已经将2个模型(CodeFuse-DeepSeek-33b和CodeFuse-DeepSeek-33b-INT4)发布到HuggingFace和ModelScope社区,大家可以选择通过以下链接下载:

Model

HuggingFace

ModelScope

CodeFuse-DeepSeek-33b

https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B

CodeFuse-DeepSeek-33B

CodeFuse-DeepSeek-33b-4bits

https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B-4bits

CodeFuse-DeepSeek-33B-4bits

推理格式与代码

CodeFuse-DeepSeek-33b使用的推理格式如下:

<s>system
{THIS IS YOUR SYSTEM PROMPT}
<s>human
{THIS IS YOUR PROMPT of ROUND 1}
<s>bot
{THIS IS MODEL's RESPONSE of ROUND 1}
<s>human
{THIS IS YOUR PROMPT of ROUND 2}
<s>bot

在这个格式中,sysem部分是可选的,对话轮数可以是多轮的也可以是单轮的。下面是一些具体的案例展示:

<s>human
请写一个快排程序
#Python
<s>bot
<s>system
你是CodeFuse,你会被给定一个任务,你必须按照用户的要求完成任务。
<s>human
请写一个快排程序
#Python
<s>bot
下面是一个使用Python编写的快速排序算法的示例代码:
```python
def quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr) // 2]left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quick_sort(left) + middle + quick_sort(right)
# 测试快速排序算法
arr = [3, 6, 8, 10, 1, 2, 1]
print(quick_sort(arr))
```
这段代码定义了一个`quick_sort`函数,它接受一个列表作为参数,并返回排序后的列表。在函数内部,首先判断列表的长度是否小于等于1,如果是,则直接返回列表本身。否则,选择列表中间的元素作为基准值,并将列表分成三个部分:小于基准值的部分、等于基准值的部分和大于基准值的部分。然后,对这三个部分分别递归调用`quick_sort`函数进行排序,最后将排序后的三个部分合并并返回。
通过这个示例,你可以了解到如何使用Python编写快速排序算法,并对其进行测试。
<s>human
请为以上代码生成单测用例
<s>bot

下面是一段示例的推理代码:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfigmodel_dir = "codefuse-ai/CodeFuse-DeepSeek-33B"def load_model_tokenizer(model_path):tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)tokenizer.eos_token = "<|end▁of▁sentence|>"tokenizer.pad_token = "<|end▁of▁sentence|>"tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)tokenizer.padding_side = "left"model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto',torch_dtype=torch.bfloat16, trust_remote_code=True)return model, tokenizerHUMAN_ROLE_START_TAG = "<s>human\n"
BOT_ROLE_START_TAG = "<s>bot\n"text_list = [f'{HUMAN_ROLE_START_TAG}Write a QuickSort program\n#Python\n{BOT_ROLE_START_TAG}']model, tokenizer = load_model_tokenizer(model_dir)
inputs = tokenizer(text_list, return_tensors='pt', padding=True, add_special_tokens=False).to('cuda')
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
generation_config = GenerationConfig(eos_token_id=tokenizer.eos_token_id,pad_token_id=tokenizer.pad_token_id,temperature=0.1,max_new_tokens=512,num_return_sequences=1,num_beams=1,top_p=0.95,do_sample=False
)
outputs = model.generate(inputs= input_ids,attention_mask=attention_mask,**generation_config.to_dict()
)
gen_text = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:], skip_special_tokens=True)
print(gen_text[0])

继续微调

如果你想在这两个模型基础上继续微调,欢迎使用我们开源的多任务高效微调框架MFTCoder(https://github.com/codefuse-ai/MFTCoder/tree/main/mftcoder_accelerate)。要继续微调,你需要准备好训练数据集(CodeFuse-ChatML格式)、设置训练配置文件、设置运行配置文件并启动训练。这里提供一个对Qwen-1.8模型用MFTCoder进行微调的案例供参考:https://github.com/codefuse-ai/MFTCoder/tree/codeqwen_competition/mft_peft_hf。

联系我们

MFTCoder已经开源,本文中提到的模型和数据集也在陆续开源中,如果您喜欢我们的工作,欢迎试用、指正错误和贡献代码,可以的话请给我们的项目增加Star以支持我们。

  • GitHub项目主页:https://github.com/codefuse-ai/MFTCoder
  • HuggingFace主页:https://huggingface.co/codefuse-ai
  • 魔搭社区主页:ModelScope 魔搭社区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/443294.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

语言革命:NLP与GPT-3.5如何改变我们的世界

文章目录 &#x1f4d1;前言一、技术进步与应用场景1.1 技术进步1.2 应用场景 二、挑战与前景三、伦理和社会影响四、实践经验五、总结与展望 &#x1f4d1;前言 自然语言处理&#xff08;Natural Language Processing&#xff0c;NLP&#xff09;是人工智能领域的一个重要分支…

Python爬虫---Scrapy框架---CrawlSpider

CrawlSpider 1. CrawlSpider继承自scrapy.Spider 2. CrawlSpider可以定义规则&#xff0c;再解析html内容的时候&#xff0c;可以根据链接规则提取出指定的链接&#xff0c;然后再向这些链接发送请求&#xff0c;所以&#xff0c;如果有需要跟进链接的需求&#xff0c;意思就是…

WPF三大基础元素:键盘、鼠标与焦点

键盘类与事件处理 WPF框架中内置了System.Input.Keyboard基础键盘类&#xff0c;该类提供了丰富的键盘相关功能&#xff0c;包括描述键盘状态的属性、处理键盘操作的方法以及一系列事件。这些键盘事件不仅直接由Keyboard类提供&#xff0c;还通过UIElement等XAML基元素类向外传…

java框架面试篇

Spring框架 spring Bean线程安全问题 Scope注解 我们可以在bean的类上加Scope注解来声明这个Bean是单个实例还是多个实例。在默认情况下Bean是单个实例的&#xff0c;此时的注解中的属性默认为Scope("singleton")&#xff0c;Scope("prototype")则是一…

5G阅信是如何进行识别与解析的?5G阅信短链有什么用?

什么叫5G阅信&#xff1f;5G阅信&#xff0c;是通过短信网关向手机用户发送一条带有智能短信解析链接的文字短信&#xff0c;手机收到短信后&#xff0c;通过短信增强技术&#xff0c;自动从服务器拉取报备的信息&#xff0c;将短信内容解析为图文、视频、红包、卡券等样式的富…

如何在Raspberry Pi上启用SSH并结合cpolar内网穿透实现公网远程访问本地树莓派

文章目录 如何通过 SSH 连接到树莓派步骤1. 在 Raspberry Pi 上启用 SSH步骤2. 查找树莓派的 IP 地址步骤3. SSH 到你的树莓派步骤 4. 在任何地点访问家中的树莓派4.1 安装 Cpolar4.2 cpolar进行token认证4.3 配置cpolar服务开机自启动4.4 查看映射到公网的隧道地址4.5 ssh公网…

如何缩小gif动图体积?一招教你在线压缩

GIF动图是一种常用的图像文件格式&#xff0c;它支持多帧动画和透明背景。与静态图像不同&#xff0c;GIF动图可以显示一系列的图像帧&#xff0c;以创建动态效果。这些动图通常以循环播放的方式展示&#xff0c;在社交媒体、聊天应用和网页上广泛使用。但是gif动图的体积通常也…

算法:积木游戏学习数学

一、算法描述 小华和小微一起通过玩积木游戏学习数学。 他们有很多积木&#xff0c;每个积木块上都有一个数字&#xff0c;积木块上的数字可能相同。 小华随机拿一些积木挨着排成一排&#xff0c;请小微找到这排积木中数字相同且所处位置最远的2块积木块&#xff0c;计算他们的…

我国个体工商户达1.24亿户,支撑近3亿人就业

官媒报道截至2023年底&#xff0c;全国登记在册个体工商户1.24亿户&#xff0c;占经营主体总量的67.4%&#xff0c;支撑近3亿人就业。 什么概念&#xff1f;我帮大家理解一下&#xff0c;2024年了&#xff0c;现在中国5个人里面就有一个人不用上班&#xff0c;而是自己当起了老…

k8s的operator基石:controller-runtime源码解析

写在之前 今天开始开更controller-runtime的源码阅读&#xff0c;笔者建议大家在阅读前了解以下知识&#xff0c;可能会帮助大家更好的理解源码逻辑。 1.client-go的基础使用 2. 使用kubebuilder搭建一个简单的controller-runtime环境 3.informer的基本思想 1.源码环境搭建 参…

【Matplotlib】科研绘图——折线图

文章目录 1、导入2、定义Font及Style3、设置图像大小及坐标刻度4、数据准备5、自定义draw6、其他设置7、效果图 1、导入 import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import numpy as np import pandas as pd %…

【Tomcat与网络8】从源码看Tomcat的层次结构

在前面我们介绍了如何通过源码来启动Tomcat&#xff0c;本文我们就来看一下Tomcat是如何一步步启动的&#xff0c;以及在启动过程中&#xff0c;不同的组件是如何加载的。 一般&#xff0c;我们可以通过 Tomcat 的 /bin 目录下的脚本 startup.sh 来启动 Tomcat&#xff0c;如果…