【Linux网络编程一】网络基础(网络框架)

【Linux网络编程一】网络基础(网络框架)

  • 一.什么是协议
    • 1.通信问题
    • 2.协议本质
    • 3.网络协议标准
  • 二.协议分层
    • 1.为什么协议要分层
    • 2.如何具体的分层
  • 三.操作系统OS与网络协议栈的关系
    • 1.核心点:网络通信贯穿协议栈
  • 四.局域网中通信的基本原理
    • 1.封装,解包分用
    • 2.正确看待局域网
  • 五.以太网下是如何通信的
    • 1.碰撞域
  • 六.交换机

本篇开始总结网络知识,系统部分到此结束。
网络的本质就是在获取和生产数据,而系统的本质就是在处理数据。从网络中获取到数据利用系统调用来处理数据。而网络的本质也就是文件,我往文件里写,就是往网卡里写,往网卡里写,就是往网络里写。

一.什么是协议

我们在生活中都是基于数据来进行协助的,而一般我们可以根据协议约定,来减少沟通成本。
协议就是一种约定,它的出现是为了解决通信过程中出现的问题,所以我们只要理解了通信过程会出现什么样的问题,就能清楚要制作什么样的协议,那么通信过程中存在哪些问题呢?

1.通信问题

在这里插入图片描述
在两台主机网络通信过程中,面临着以下四种问题:

【问题1】.你怎么保证你的数据能准确的到达下一个设备?
【问题2】.你如何定位的到要发送的主机位置呢?
【问题3】.长距离传输过程中数据会不会丢失呢?
【问题4】对方接收到数据,就算完了吗?如何处理发来的数据呢?

通信的两台主机都会面临着相同的问题,为了解决这些通信问题,所以就需要制定对应的协议来解决。
问题1由以太网协议解决
问题2由ip协议来解决
问题3由tcp协议来解决
问题4由应用层协议来解决。

2.协议本质

在我们日常生活中,类似于协议的东西有很多,就比如我们接收快递时,我们想要的是买的物品本身,但商家默认会将一个快递盒子发给我们,并且外面还贴有标签(收件人,手机)等信息。这个快递盒子和标签就是协议!

1.所以我们在接收快递时,我们会收到除了快递本身之外的更多信息字段,比如快递盒子外面贴的标签,这个多出来的信息字段,就是协议,严格上说是协议的报头!
2.事实上,在我们日常发送数据时,也不是单单就把数据发送过去,我们一定还会在我们要发送的数据之外多发送一些东西,这个多出来的,就是协议!
在这里插入图片描述

这个多出来的东西,就是一些信息字段,描述某些特征,而在计算机当中,结构体恰好就是用来描述对象的一些基本信息和属性,所以在计算机中,协议的表现形式就是结构体对象!

所以一台主机发送一个结构体对象,另一台主机是可以立马认识到这个结构体表示什么意思,因为该主机也有该类的源代码,结构体对象类型是一样的,所以我们就可以跨逐渐上让它们基于结构体快速形成约定,这就是协议!
在这里插入图片描述

3.网络协议标准

【问题】那么两台主机如果要网络通信,只要约定好协议就可以了吗?

协议是定制设置出来的一种形式,但协议代表的含义也是定制者赋予的,所以除了协议形式要统一,还有很多东西需要统一起来,比如代表的含义,形式大小等待细节。
在这里插入图片描述

统一的标准,从软件到硬件各方面都需要一支,这就形成了网络协议。

二.协议分层

在这里插入图片描述

1.为什么协议要分层

1.本质是因为问题是层状的,所以协议定制出来肯定也是层状的。并且设置成层后,就可以降低耦合度,减少维护成本好维护。
2.因为协议分层后,我们可以认为是每层协议在和每层协议在直接通信,跟下层没有关系,下层出现问题,不会影响到上层。

在这里插入图片描述

3.协议分层后,在逻辑上就可以看成各层之间在匹配通信

2.如何具体的分层

在网络中,协议具体被分成5层,但最重要的是网络层ip和传输层tcp,所以被称为TCP/IP五层模型。
在这里插入图片描述

这五层从下往上分别是,物理层,数据链路层,网络层,传输层,应用层。各自都有对应的协议。
每层具有不同的功能:
在这里插入图片描述

三.操作系统OS与网络协议栈的关系

1.物理层对应着系统中的硬件部分,比如网卡。
2.数据链路层对应着驱动程序,驱动软件。
3.而网络层和传输层是内嵌在内核里的,属于操作系统的部分。
4.应用层就相当于在操作系统之上的用户层,更准确的来说是用户层的各自软件应用。
在这里插入图片描述

在这里插入图片描述

操作系统和网络栈是一一对应起来的,网络通信的本质也就是在访问硬件网卡,而用户想要访问硬件,必须要经过操作系统,而操作系统又不相信用户,所以回给上层提供系统调用来访问内部。所以对应的网络通信,用户想要访问网卡,就必须调用系统调用,所以上层开发者为了更好的通信,所以会根据系统调用来开发一些协议来让我们使用。
5.操作系统虽然有多种,比如Linux和windows,但是网络栈却只有一种,所有的操作系统必须遵守,不然系统设备无法入网通信。
在这里插入图片描述

1.核心点:网络通信贯穿协议栈

所以网络通信的本质:就是贯穿协议栈的过程!这个过程先自顶向下,贯穿协议栈,然后通过网卡传输到另一台主机,再自底向上贯穿协议栈。
在这里插入图片描述

四.局域网中通信的基本原理

知识点1:在局域网(网络)当中,任意两台(直接相连的)主机是可以通信的,比如说手机可以投屏到电视上,但必须使用同一个网络才可以。
知识点2:在局域网(网络)当中通信协议有很多种,而以太网是属于局域网通信标准的其中一种

那么在局域网(就是在网络中)当中的两个主机是如何进行通信的呢?

两台主机在局域网中直接通信的过程,本质就是在不断的封装和解包的过程!
在这里插入图片描述

1.封装,解包分用

【问题1】什么叫封装呢?

网络通信时,需要贯穿协议栈,比如A主机要将消息通过网络发送给B主机,那么消息需要由A主机的网络协议栈由顶自下贯穿到B主机,再由底向上贯穿B主机的网络协议栈。
因为协议是附加字段,是一个结构体对象,所以每层协议都有对应的结构体对象。
消息就放在协议的后面,我们称这个部分为报文,而协议结构体部分称为报头。
每贯穿一层协议,报文都会多出一个协议报头,该协议报头就是该层协议的结构体对象。

1.报文是由报头和有效载荷构成,每一层协议栈都会往报文上添加新的报头,而报头后面的就变成新的有效载荷了。
在这里插入图片描述

贯穿协议栈,每层都需要添加报头,这个过程就是不断的封装报文。
【问题2】如何将数据发送给对端的呢?

网络协议栈的层状结构中,每一层都有协议,而通过协议就可以将数据发送给对端,比如数据链路层,通过以太网协议将数据发送给对端主机的数据链路层。
在这里插入图片描述

【问题3】什么叫解包?
由A主机发送给B主机,先自顶向下贯穿A主机网络协议栈,经过添加封装报头,最终到达数据链路层,数据和链路层通过协议,将报文发送给对端链路层。对端链路层再自底向上贯穿协议栈。
并且每层协议栈是可以区别哪些是报头哪里是报文的,然后对端主机的链路层就会将该报文的报头和有效载荷分离,将有效载荷交给上一层协议!
而由协议层分离报头和有效载荷的过程就是不断的在解包报文,会将属于该层的协议报头分离出去,再将剩下的有效载荷交给上一层(贯穿协议栈)
【问题4】什么叫分用?
对端主机的协议层接收到报文后,需要解析报文(分离报头和有效载荷)将有效载荷往上层协议发送,而它怎么知道发送上层的哪一个协议呢?每一层协议栈都会有许多协议存在,那么应该发送给上一层的哪一个协议呢?
所以几乎所有的协议,都要在报头中提供,将自己的有效载荷交付给上层哪一个协议的能力!这个能力就叫分用。

在这里插入图片描述

【结论】:
在这里插入图片描述

2.正确看待局域网

在这里插入图片描述

局域网就一个网络,而网络就是一个文件,主机之间通信就是进程之间通信,进程之间通过网络进行通信,所以网络就是一个共享资源,并且要求是互斥访问该资源。

五.以太网下是如何通信的

我们知道报文在传递到链路层时,是根据以太网协议与对端链路层进行通信的。那么具体在以太网下是如何通信的呢?
在这里插入图片描述

【前提知识】 在局域网中,每台主机都会有一个唯一标识自己的标志–>Mac地址/ip地址,所以每台主机都是可以识别对方是谁的。在这里插入图片描述

在局域网当中,发送一条消息,会被局域网内的所有主机接收到,也就是消息首先会贯穿协议栈,经历封装添加报头,到达数据链路层,最后在网卡硬件层面接收到。而对端网卡接收到数据是通过以太网接收到的。

以太网下数据是如何传输的呢?是如何通信的呢?

1.每台主机都有唯一的标识,所以A主机要发送消息给B主机,A主机是需要知道B主机的Mac地址的(消息贯穿A主机的协议栈到达数据链路层,在报头中是存储着B主机的Mac地址的)
2.首先在局域网当中所有的主机都会接收到报文(在逻辑上,每一层协议直接通信,也就是在链路层收到消息。A主机数据链路层通过以太网将报文发送给各主机的的数据链路层)。
3.而其他主机的数据链路层一旦接收到报文,就会进程报头分离解析,根据标识每台主机的ip地址发现不是发送给自己的,就会将报文直接丢弃。
4.如果发现是发送给自己的,就会将有效载荷发送给上一层协议。

在这里插入图片描述

1.碰撞域

往局域网当中发送一条消息,该局域网下的所有主机都会收到,而多台主机同时往局域网中发送消息,那么这些消息就会发送碰撞,发生丢失,而发生碰撞的地方就称为碰撞域,所以以太网是基于碰撞域形成的。

所以以太网下通信是会存在数据碰撞问题的。
在这里插入图片描述

有问题就会有解决方法,如何解决该碰撞问题呢?
【碰撞机制】采用延迟发送
在这里插入图片描述
【网卡工作模式】正常模式与复杂模式
正常模式就是不是发送给自己的报文直接丢弃。
复杂模式就是不是发送给自己的报文不会直接丢弃。
【安全问题】

在这里插入图片描述

六.交换机

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/444409.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LLM多模态】Cogview3、DALL-E3、CogVLM、CogVideo模型

note 文章目录 noteVisualGLM-6B模型图生文:CogVLM-17B模型1. 模型架构2. 模型效果 文生图:CogView3模型DALL-E3模型CogVideo模型网易伏羲-丹青模型Reference VisualGLM-6B模型 VisualGLM 是一个依赖于具体语言模型的多模态模型,而CogVLM则是…

ElementUI Form:InputNumber 计数器

ElementUI安装与使用指南 InputNumber 计数器 点击下载learnelementuispringboot项目源码 效果图 el-radio.vue &#xff08;InputNumber 计数器&#xff09;页面效果图 项目里el-input-number.vue代码 <script> export default {name: el_input_number,data() {re…

GPT-5的功能界面曝光。。。

最近网络上流传的照片是否真实尚不可知&#xff0c;我们需要进一步的核实与分析。 GPT-5的预期发布已经引起了业界的极大关注。根据Roemmele的透露&#xff0c;GPT-5将是一个革命性的多模态模型&#xff0c;能够支持语音、图像、编程代码和视频等多种格式&#xff0c;这标志着…

2024上海国际户外服装服饰展览会

2024上海国际户外服装服饰展览会 2024 Shanhai International Outdoor Clothing Exhibition 时间&#xff1a;2024年09月5-7日 地点&#xff1a;上海世博展览馆 详询主办方陆先生 I38&#xff08;前三位&#xff09; I82I&#xff08;中间四位&#xff09; 9I72&#xf…

安装并开始设置 Windows 终端(命令提示符或Windows PowerShell或Azure Cloud Shell)

安装 安装 若要试用最新的预览功能&#xff0c;可能还需要安装 Windows 终端预览。 ‼️备注 如果你无法访问 Microsoft Store&#xff0c;GitHub 发布页上发布有内部版本。 如果从 GitHub 安装&#xff0c;Windows 终端将不会自动更新为新版本。 有关使用包管理器&#xff…

基于spring boot实现邮箱发送和邮箱验证

目录 一、邮箱发送实现1. 开通邮箱服务2. 添加邮箱依赖3.添加配置4.添加邮箱通用类5. 测试类 二、邮箱验证实现1.添加依赖2. 添加配置3.添加controller4. 测试 项目地址: https://gitee.com/nssnail/springboot-email 一、邮箱发送实现 1. 开通邮箱服务 使用qq邮箱、163邮箱都…

简单实践 java spring cloud 负载均衡

1 概要 1.1 实现一个最简单的微服务。远程调用负载均衡&#xff0c;基本上完成了最核心的微服务框架。 远程调用&#xff1a;RestTemplate 注册中心&#xff1a;eureka 负载均衡&#xff1a;Ribbon 1.2 要点 1.2.1 依赖 1.2.1.1 主框架依赖 spring boot 依赖 <depe…

基于腾讯云服务器搭建幻兽帕鲁服务器保姆级教程

随着网络游戏的普及&#xff0c;越来越多的玩家希望能够拥有自己的游戏服务器&#xff0c;以便能够自由地玩耍。而腾讯云服务器作为一个优秀的云计算平台&#xff0c;为玩家们提供了一个便捷、稳定、安全的游戏服务器解决方案。本文将为大家介绍如何基于腾讯云服务器搭建幻兽帕…

【Redis】实现购物秒杀及分布式锁

Redis实现购物秒杀及分布式锁 全局唯一ID Redis自增ID策略 ID构造是:时间戳 + 计数器 每天一个key,方便统计订单量 业务实现 获取指定时间的秒数 LocalDateTime timeBegin = LocalDateTime.of(2024, 1, 1, 0, 0, 0); long second = timeBegin.toEpochSecond(ZoneOffset…

XCTF:warmup[WriteUP]

CtrlU查看页面源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><meta http-equiv"X-UA-Compatible&q…

数据的保护:local | protected

文章目录 前言一、local二、protected总结 前言 为了数据的保护&#xff0c;我们可以通过local或者protected去修饰数据&#xff0c;本文主要记录一下它俩之间的区别。 一、local 基类中用local修饰的变量&#xff0c;在其子类中不能被访问。 如下所示&#xff0c;基类中的DO…

D2576——单片开关电压调整电路,可提供降压开关稳压器的各种功能,能驱动3A负载,有优异的电压线性度和负载调整能力。兼容型号LM2576

D2576是一块单片开关电压调整电路&#xff0c;能提供降压开关稳压器的各种功能&#xff0c;能驱动3A负载&#xff0c;有优异的电压线性度和负载调整能力。 主要特点&#xff1a; ● 3.3V. 5V和12V及可调电压输出 ● 3A输出电流 ● 外部元件少&#xff0c;仅需要四个 ● 振荡频…