揭开时间序列的神秘面纱:特征工程的力量

目录

  • 写在开头
  • 1. 什么是特征工程?
    • 1.1 特征工程的定义和基本概念
    • 1.2 特征工程在传统机器学习中的应用
    • 1.3 时间序列领域中特征工程的独特挑战和需求
  • 3. 时间序列数据的特征工程技术
    • 2.1 数据清洗和预处理
      • 2.1.1 缺失值处理
      • 2.1.2 异常值检测与处理
    • 2.2 时间特征的提取
      • 2.2.1 时间戳解析
      • 2.2.2 季节性和周期性特征提取
    • 2.3 数据转换和平滑
      • 2.3.1 对数变换
      • 2.3.2 移动平均和指数平滑
    • 2.4 Lag 特征的构建
      • 2.4.1 Lagged 特征的概念
      • 2.4.2 基于 Lag 的特征工程技术
    • 2.5 基于窗口的特征
      • 2.5.1 滚动统计量
      • 2.5.2 滑动窗口特征
    • 2.6 完整代码
  • 3. 高级特征工程技术
    • 3.1 时间序列分解
      • 3.1.1 趋势、季节性和残差的分解技术
    • 3.2 波形特征提取
      • 3.2.1 傅里叶变换
      • 3.2.2 小波变换
    • 3.3 特征选择和降维
      • 3.3.1 相关性分析
      • 3.3.2 主成分分析(PCA)在时间序列中的应用
  • 写在最后

写在开头

时间序列分析在各个领域都发挥着关键作用,从金融到医疗再到天气预测。为了更深入了解时间序列数据,特征工程成为了不可或缺的环节。本文将探讨时间序列分析中特征工程的重要性、技术方法以及实际案例,助您更好地应对时间序列数据的挑战。

1. 什么是特征工程?

特征工程是数据科学中至关重要的一环,它涉及对原始数据进行处理和转换,以提取出对机器学习模型建模和预测有价值的特征。在时间序列领域,特征工程的任务更为复杂,因为需要考虑数据的时序性和动态性。

1.1 特征工程的定义和基本概念

特征工程是将原始数据转换为更能反映问题本质的特征的过程。在时间序列分析中,这包括从时间戳数据中提取有用信息的步骤,如日期、星期几、季节等。通过将时间序列数据转换为可解释的特征,我们能够使模型更好地理解数据中的模式和趋势。

1.2 特征工程在传统机器学习中的应用

传统机器学习中的特征工程通常包括数据缩放、标准化和选择最相关的特征。在时间序列领域,这些基本操作仍然适用,但由于时间的引入,我们需要更深入地考虑数据的动态性。这可能涉及到滞后特征的创建,以便模型能够考虑先前时间点的信息。

1.3 时间序列领域中特征工程的独特挑战和需求

时间序列数据具有独特的性质,如趋势、季节性和周期性。因此,在特征工程中需要考虑更多的因素。例如,在处理季节性数据时,需要识别并提取季节性特征,以更好地理解数据的周期性变化。同时,处理趋势时可能需要进行平滑操作,以减少噪声的影响。

另一个挑战是处理滞后效应。在时间序列中,过去的观测值对当前和未来的预测具有重要影响。因此,特征工程需要包括滞后特征的创建,以使模型能够捕捉到这种延迟的影响。

3. 时间序列数据的特征工程技术

时间序列数据的特征工程技术在数据预处理和特征提取方面扮演着至关重要的角色。

** 构建模拟数据:**

为了方便下面的演示,在此处构建模拟数据进行展示:

import pandas as pd
import numpy as np# 构建时间序列数据
np.random.seed(25)
date_rng = pd.date_range(start='2022-01-01', end='2022-01-15', freq='D')
df = pd.DataFrame(date_rng, columns=['timestamp'])
df['values'] =np.random.rand(15)* 100# 添加缺失值
df.loc[df.sample(frac=0.1).index, 'values'] = np.nan
df

运行上述代码后,得出具体的数据截图如下:
2.1.1

2.1 数据清洗和预处理

2.1.1 缺失值处理

缺失值处理是时间序列数据特征工程中的重要一环。我们经常会遇到时间序列数据中某些时间点的观测值缺失,需要采取合适的方法来处理这些缺失值。

一种常见的方法是使用插值法,根据已知的观测值在时间上进行插值来填充缺失值。比如,我们可以使用线性插值:

import pandas as pd# 假设df是包含时间序列数据的DataFrame,其中'values'是要插值的列
df['values'] = df['values'].interpolate(method='linear')

另一种常见的方法是使用填充法,根据前后时间点的观测值来填充缺失值。这在一些场景中比较适用:

df['values'] = df['values'].fillna(method='ffill')  # 使用前一个时间点的值填充
# 或者
df['values'] = df['values'].fillna(method='bfill')  # 使用后一个时间点的值填充

还有一种常见的方法是删除缺失值,但在时间序列中,直接删除可能导致丢失有用的时间信息。因此,我们通常会选择更为智能的填充方法。

2.1.2 异常值检测与处理

异常值在时间序列数据中可能会对模型产生负面影响,因此需要进行检测和处理。一种常见的方法是基于统计学的方法,例如使用标准差:

# 计算平均值和标准差
mean_val = df['values'].mean()
std_val = df['values'].std()# 定义异常值的阈值,通常是平均值加减几倍的标准差
threshold = 2.0# 标记异常值
df['is_outlier'] = abs(df['values'] - mean_val) > threshold * std_val# 处理异常值,可以选择替换为平均值或使用插值法
df.loc[df['is_outlier'], 'values'] = mean_val

除了基于统计的方法,还可以使用机器学习算法进行异常值检测,例如使用孤立森林(Isolation Forest):

from sklearn.ensemble import IsolationForest# 创建孤立森林模型
model = IsolationForest(contamination=0.05)  # 指定异常值比例# 训练模型并进行异常值预测
df['is_outlier'] = model.fit_predict(df[['values']])# 处理异常值,同样可以选择替换为平均值或使用插值法
df.loc[df['is_outlier'] == -1, 'values'] = mean_val

这些方法可以根据实际情况选择,以确保在处理缺失值和异常值时保持数据的准确性和可靠性。

2.2 时间特征的提取

2.2.1 时间戳解析

时间戳解析是将时间戳数据转换为可用于建模的特征的过程。常见的时间戳数据格式包括年月日时分秒,我们可以将其解析成不同的时间单位。

假设我们有一个包含时间戳的DataFrame:

import pandas as pd# 假设df包含时间戳列'timestamp'
df['timestamp'] = pd.to_datetime(df['timestamp'])# 提取年、月、日等时间特征
df['year'] = df['timestamp'].dt.year
df['month'] = df['timestamp'].dt.month
df['day'] = df['timestamp']

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/444792.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode: 189.轮转数组

本篇目标了解,翻转数组的经典解法, 189. 轮转数组 - 力扣(LeetCode) 目录 基本方法概述: 1,翻转做法,推荐时O(n),空(1) 2&#x…

前端入门第二天

目录 一、列表、表格、表单 二、列表(布局内容排列整齐的区域) 1.无序列表(不规定顺序) 2.有序列表(规定顺序) 3.定义列表(一个标题多个分类) 三、表格 1.表格结构标签 2.合并…

回归预测 | Matlab实现CPO-LSSVM冠豪猪算法优化最小二乘支持向量机多变量回归预测

回归预测 | Matlab实现CPO-LSSVM冠豪猪算法优化最小二乘支持向量机多变量回归预测 目录 回归预测 | Matlab实现CPO-LSSVM冠豪猪算法优化最小二乘支持向量机多变量回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现CPO-LSSVM冠豪猪算法优化最小二乘支持向…

[Visual Studio] vs 2022中如何创建空白的解决方案

在Visual Studio 2022中创建一个空白的解决方案非常简单。请按照以下步骤操作: 打开Visual Studio。 在启动页面上,选择“创建新的项目”。 在“创建新项目”的对话框中,搜索“空白”。 在中间搜索结果中,选择“空白解决方案”…

【鸿蒙】大模型对话应用(三):跨Ability跳转页面

Demo介绍 本demo对接阿里云和百度的大模型API,实现一个简单的对话应用。 DecEco Studio版本:DevEco Studio 3.1.1 Release HarmonyOS SDK版本:API9 关键点:ArkTS、ArkUI、UIAbility、网络http请求、列表布局、层叠布局 页面跳…

沁恒微WCH32v003驱动ST7735S硬件spi+DMA调试小坑(2)

上一篇文章解决了spidma传输数据时DC线操作时序不匹配的问题,但是屏幕依旧没有点亮,所以这一篇文章继续找还存在的问题。上一篇文章:沁恒微WCH32v003驱动ST7735S硬件spiDMA调试小坑-CSDN博客 老规矩,先用逻辑分析仪抓取一下波形。…

【任职资格】某国有通信集团任职资格体系搭建管理咨询项目纪实

A公司是某通信集团为强化经营,管理集团重要客户市场而成立的专业化分公司,是当前信息通信行业发展的重要蓝海。A公司成立于2010年10月,短短几年得到了迅速的发展,目前,A公司客户数已超过200万家,所管理的集…

openssl3.2 - .pod文件的查看方法

文章目录 .pod文件的查看方法概述笔记初步的解决方法备注 - pod2html.bat的详细用法好像Perl就自带这个BATEND .pod文件的查看方法 概述 看到openssl源码目录下有很多.pod文件, 软件发布的帮助内容都在里面. 当make install后, 大部分的.pod都会转成html文件, 但是有一部分…

Redis -- 单线程模型

失败是成功之母 ——法国作家巴尔扎克 目录 单线程模型 Redis为什么这么快 单线程模型 redis只使用一个线程,处理所有的命令请求,不是说redis服务器进场内部真的就只有一个线程,其实也有多个线程,那就是处理网络和io的线程。 R…

【每日一题】6.LeetCode——轮转数组

📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》|《数据结构与算法》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ 🙏小杨水平有限,欢…

光杆司令如何部署大模型?

1、背景 今天这种方式非常贴合低配置笔记本电脑的小伙伴们, 又没有GPU资源, 可以考虑使用api方式,让模型服务厂商提供计算资源 有了开放的api,让你没有显卡的电脑也能感受一下大模型管理知识库,进行垂直领域知识的检索和问答.算是自己初步玩一下AI agent 之前有写过一篇《平民…