时间序列预测 —— TCN模型

时间序列预测 —— TCN模型

卷积神经网络(Convolutional Neural Network,CNN)在图像处理等领域取得了显著的成就,一般认为在处理时序数据上不如RNN模型,而TCN(Temporal Convolutional Network)模型是一种基于卷积神经网络的时间序列预测模型,具有一定的优势。本文将介绍TCN模型的理论基础、公式推导、优缺点,并通过Python实现TCN的单步预测和多步预测,最后对TCN模型进行总结。

1. TCN模型理论及公式

TCN

1.1 TCN模型结构

TCN模型主要包含卷积层和残差块。卷积层用于提取序列中的局部特征,而残差块有助于捕捉序列中的长期依赖关系。TCN的典型结构如下:

Input -> [Conv1D] -> [Residual Block] x N -> [Output Layer]

其中,[Conv1D] 表示一维卷积层,[Residual Block] 表示残差块,N 表示残差块的堆叠次数。

1.2 卷积操作

TCN模型的卷积操作采用了膨胀卷积(Dilated Convolution),膨胀卷积通过在卷积核之间插入零元素来扩大感受野。膨胀卷积的数学表达式为:

y [ t ] = ∑ k = 0 K − 1 w [ k ] ⋅ x [ t − d ⋅ k ] y[t] = \sum_{k=0}^{K-1} w[k] \cdot x[t - d \cdot k] y[t]=k=0K1w[k]x[tdk]

其中, y [ t ] y[t] y[t] 是卷积操作的输出, w [ k ] w[k] w[k] 是卷积核的权重, x [ t − d ⋅ k ] x[t - d \cdot k] x[tdk] 是输入序列的元素, d d d 是膨胀率。

1.3 残差块

TCN模型的残差块由两个卷积层和一个残差连接组成。残差块的计算过程如下:

  1. 输入 x x x 经过一个膨胀卷积层,得到输出 y y y
  2. y y y 与输入 x x x 相加,得到残差块的输出。

残差块的数学表达式为:

Output = x + Conv1D ( x ) \text{Output} = x + \text{Conv1D}(x) Output=x+Conv1D(x)

1.4 TCN模型的预测

TCN模型的预测过程包括多个残差块的堆叠,以及最后的输出层。整个模型的预测过程可以用以下公式表示:

Output = Output Layer ( Residual Block ( Residual Block ( … ( Residual Block ( Input ) ) … ) ) ) \text{Output} = \text{Output Layer}(\text{Residual Block}(\text{Residual Block}(\ldots(\text{Residual Block}(\text{Input}))\ldots))) Output=Output Layer(Residual Block(Residual Block((Residual Block(Input)))))

2. TCN模型优缺点

2.1 优点

  • TCN模型能够捕捉序列中的长期依赖关系,适用于时间序列数据。
  • 模型结构相对简单,易于理解和调整。

2.2 缺点

  • TCN模型在某些场景下可能对序列中的短期模式抽取效果不如LSTM等模型。

3. TCN模型与LSTM、GRU的区别

TCN模型、LSTM(Long Short-Term Memory)、GRU(Gated Recurrent Unit)都是用于时间序列预测的模型,它们之间有一些区别:

  • 结构差异: TCN主要由卷积层和残差块组成,具有较为简单的结构;LSTM和GRU是循环神经网络(Recurrent Neural Network,RNN)的变种,具有包含循环单元的结构。
  • 捕捉依赖关系的方式: TCN通过膨胀卷积和残差块来捕捉序列中的依赖关系;LSTM和GRU通过内部的门控机制(门控循环单元)来控制信息的传递和遗忘,从而捕捉长期和短期依赖关系。

4. Python实现TCN的单步预测和多步预测

以下是使用TensorFlow中Keras库实现TCN模型的单步预测和多步预测的代码。

# 导入必要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Input, Dense
from tcn import TCN, tcn_full_summary# 生成示例数据
def generate_data():t = np.arange(0, 100, 0.1)data = np.sin(t) + 0.1 * np.random.randn(len(t))return data# 数据预处理
def preprocess_data(data, look_back=10):scaler = MinMaxScaler(feature_range=(0, 1))data = scaler.fit_transform(data.reshape(-1, 1)).flatten()X, y = [], []for i in range(len(data) - look_back):X.append(data[i:(i + look_back)])y.append(data[i + look_back])return np.array(X), np.array(y)# 构建 TCN 模型
def build_tcn_model(look_back, filters=64, kernel_size=2, dilations=[1, 2, 4, 8, 16]):model = Sequential()model.add(Input(shape=(look_back, 1)))model.add(TCN(nb_filters=filters, kernel_size=kernel_size, dilations=dilations, use_skip_connections=True, return_sequences=False, activation='tanh'))model.add(Dense(units=1, activation='linear'))model.compile(optimizer='adam', loss='mean_squared_error')tcn_full_summary(model)return model# 单步预测
def tcn_single_step_predict(model, X):return model.predict(X.reshape(1, -1, 1))[0, 0]# 多步预测
def tcn_multi_step_predict(model, X, n_steps):predictions = []for _ in range(n_steps):prediction = tcn_single_step_predict(model, X)predictions.append(prediction)X = np.append(X[0, 1:], prediction).reshape(1, -1, 1)return predictions# 主程序
data = generate_data()
look_back = 10
X, y = preprocess_data(data, look_back)# 划分训练集和测试集
train_size = int(len(X) * 0.8)
X_train, y_train = X[:train_size], y[:train_size]
X_test, y_test = X[train_size:], y[train_size:]# 调整输入形状
X_train = X_train.reshape(X_train.shape[0], look_back, 1)
X_test = X_test.reshape(X_test.shape[0], look_back, 1)# 构建和训练 TCN 模型
tcn_model = build_tcn_model(look_back)
tcn_model.fit(X_train, y_train, epochs=50, batch_size=1, verbose=2)# 单步预测
single_step_prediction = tcn_single_step_predict(tcn_model, X_test[0])# 多步预测
n_steps = 10
multi_step_predictions = tcn_multi_step_predict(tcn_model, X_test[0], n_steps)# 可视化结果
plt.plot(data, label='True Data')
plt.plot([None] * len(X) + multi_step_predictions, label='TCN Predictions')
plt.legend()
plt.show()

上述代码实现了使用TCN模型进行时间序列的单步预测和多步预测。在单步预测中,模型使用最后一部分序列进行预测。在多步预测中,模型使用前面预测的结果作为输入来进行多步预测。

5. 总结

本文介绍了TCN模型的理论基础、公式推导、优缺点,并通过Python使用Keras库实现了TCN的单步预测和多步预测。TCN模型在时间序列预测任务中具有一定的优势,特别适用于捕捉序列中的长期依赖关系。然而,在实际应用中,不同任务可能需要根据具体情况选择合适的模型。希望通过本文的介绍和示例代码,读者能够更深入理解TCN模型及其在时间序列预测中的应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/448765.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS 8最小安装和网络配置

文章目录 简介下载地址VMware 17创建虚拟机最小化安装拥有的外部命令yum源有问题网络配置开启SSH Server服务关闭防火墙(目前这个地方还是有问题-加上端口依然不能访问)设置host配置JDK环境完整参考 简介 CentOS 8的IOS如果下载DVD版本至少有10G 这里我们直接选择最小安装&…

Apache Doris 整合 FLINK CDC + Iceberg 构建实时湖仓一体的联邦查询

1概况 本文展示如何使用 Flink CDC Iceberg Doris 构建实时湖仓一体的联邦查询分析,Doris 1.1版本提供了Iceberg的支持,本文主要展示Doris和Iceberg怎么使用,大家按照步骤可以一步步完成。完整体验整个搭建操作的过程。 2系统架构 我们整…

20240202在Ubuntu20.04.6下使用whisper.cpp的显卡模式

20240202在Ubuntu20.04.6下使用whisper.cpp的显卡模式 2024/2/2 19:43 【结论:在Ubuntu20.04.6下,确认large模式识别7分钟中文视频,需要356447.78 ms,也就是356.5秒,需要大概5分钟!效率太差!】 …

YOLOv5改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(轻量化Neck、全网独家首发)

一、本文介绍 本文给大家带来的改进机制是最近这几天最新发布的改进机制MFDS-DETR提出的一种HS-FPN结构,其是一种为白细胞检测设计的网络结构,主要用于解决白细胞数据集中的多尺度挑战。它的基本原理包括两个关键部分:特征选择模块和特征融合模块,在本文的下面均会有讲解,…

【LeetCode: 462. 最小操作次数使数组元素相等 II + 贪心】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

vue3-逻辑复用

什么是组合式函数 _无状态逻辑的函数_:它在接收一些输入后立刻返回所期望的输出。 比如 时间格式化的函数。 有状态逻辑的函数: 有状态逻辑负责管理会随时间而变化的状态。 比如 跟踪当前鼠标在页面中的位置。 在 Vue 应用的概念中,“组合式函数”(…

【Java程序设计】【C00187】基于SSM的旅游资源网站管理系统(论文+PPT)

基于SSM的旅游资源网站管理系统(论文PPT) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于ssm的旅游资源网站 本系统分为前台系统、用户和管理员3个功能模块。 前台系统:当游客打开系统的网址后,首先看到的就是…

【Spring源码分析】推断构造方法

推断构造方法源码解析 一、确认候选构造——AutowireAnnotationBeanPostProcessor#determineCandidateConstructors二、autowireConstructor 方法源码解析三、总结 阅读此需阅读下面这些博客先【Spring源码分析】Bean的元数据和一些Spring的工具【Spring源码分析】BeanFactory系…

YOLO-World: Real-Time Open-Vocabulary Object Detection

文章目录 1. Introduction2. Experiments2.1 Implementation Details2.2 Pre-training2.3 Ablation Experiments2.3.1 预训练数据2.3.2 对RepVL-PAN的消融研究2.3.3 文本编码器 2.4 Fine-tuning YOLO-World2.5 Open-Vocabulary Instance Segmentation2.6 Visualizations Refere…

深度剖析Sentinel热点规则

欢迎来到我的博客,代码的世界里,每一行都是一个故事 深度剖析Sentinel热点规则 前言核心概念解析:数字守护者的起源核心概念解析:简单示例演示: 参数索引:规则的基石参数索引的作用:不同场景下选…

canvas变换中心点translate ( 图文示例 )

查看专栏目录 canvas实例应用100专栏,提供canvas的基础知识,高级动画,相关应用扩展等信息。canvas作为html的一部分,是图像图标地图可视化的一个重要的基础,学好了canvas,在其他的一些应用上将会起到非常重…

微信小程序(三十一)本地同步存储API

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.存储数据 2.读取数据 3.删除数据 4.清空数据 源码&#xff1a; index.wxml <!-- 列表渲染基础写法&#xff0c;不明白的看上一篇 --> <view class"students"><view class"item…