【动态规划】【C++算法】1335 工作计划的最低难度

作者推荐

【动态规划】【字符串】【表达式】2019. 解出数学表达式的学生分数

本文涉及知识点

动态规划汇总

LeetCode1335. 工作计划的最低难度

你需要制定一份 d 天的工作计划表。工作之间存在依赖,要想执行第 i 项工作,你必须完成全部 j 项工作( 0 <= j < i)。
你每天 至少 需要完成一项任务。工作计划的总难度是这 d 天每一天的难度之和,而一天的工作难度是当天应该完成工作的最大难度。
给你一个整数数组 jobDifficulty 和一个整数 d,分别代表工作难度和需要计划的天数。第 i 项工作的难度是 jobDifficulty[i]。
返回整个工作计划的 最小难度 。如果无法制定工作计划,则返回 -1 。
示例 1:
输入:jobDifficulty = [6,5,4,3,2,1], d = 2
输出:7
解释:第一天,您可以完成前 5 项工作,总难度 = 6.
第二天,您可以完成最后一项工作,总难度 = 1.
计划表的难度 = 6 + 1 = 7
示例 2:
输入:jobDifficulty = [9,9,9], d = 4
输出:-1
解释:就算你每天完成一项工作,仍然有一天是空闲的,你无法制定一份能够满足既定工作时间的计划表。
示例 3:
输入:jobDifficulty = [1,1,1], d = 3
输出:3
解释:工作计划为每天一项工作,总难度为 3 。
示例 4:
输入:jobDifficulty = [7,1,7,1,7,1], d = 3
输出:15
示例 5:
输入:jobDifficulty = [11,111,22,222,33,333,44,444], d = 6
输出:843

动态规划

预处理

如果任务数小于天数,直接返回-1。
vHard[left][r]表示第left项任务到第r项任务的最大难道。由于vHard[left[r+1] = max(vHard[left][r]+ jobDiffficulty[r+1]) 所有预处理的时间为O(n^n)。

动态规划的状态表示

pre[j]前i天完成j项任务最小难度,dp[j]前i+1天完成j项任务最小难度。

动态规划的转移方程

d p [ i ] = M i n j = 0 i − 1 dp[i]=Min\Large_{j=0}^{i-1} dp[i]=Minj=0i1(pre[j]+vHard[j][i-1])

动态规划的初始状态

dp[0]=0,其它全部1e6,表示非法状态。

动态规划的填表顺序

i,j 皆从小到大。

动态规划的返回值

pre.back

代码

核心代码

class Solution {
public:int minDifficulty(vector<int>& jobDifficulty, int d) {m_c = jobDifficulty.size();if (m_c < d){return -1;}vector<vector<int>> vHard(m_c, vector<int>(m_c));for (int i = 0; i < m_c; i++){vHard[i][i] = jobDifficulty[i];for (int j = i + 1; j < m_c; j++){vHard[i][j] = max(vHard[i][j - 1], jobDifficulty[j]);}}vector<int> pre(m_c + 1, m_iNotMay);pre[0] = 0;while(d--){vector<int> dp(m_c + 1, m_iNotMay);for (int j = 1; j <= m_c; j++){for (int k = 0; k < j; k++){dp[j] = min(dp[j], pre[k] + vHard[k][j-1]);}}pre.swap(dp);}return pre.back();}int m_c;const int m_iNotMay = 1000'000;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	vector<int> jobDifficulty;int d;{Solution sln;jobDifficulty = { 6, 5, 4, 3, 2, 1 }, d = 2;auto res = sln.minDifficulty(jobDifficulty, d);Assert(7, res);}{Solution sln;jobDifficulty = { 9, 9, 9 }, d = 4;auto res = sln.minDifficulty(jobDifficulty, d);Assert(-1, res);}{Solution sln;jobDifficulty = { 1, 1, 1 }, d = 3;auto res = sln.minDifficulty(jobDifficulty, d);Assert(3, res);}{Solution sln;jobDifficulty = { 7, 1, 7, 1, 7, 1 }, d = 3;auto res = sln.minDifficulty(jobDifficulty, d);Assert(15, res);}{Solution sln;jobDifficulty = { 11, 111, 22, 222, 33, 333, 44, 444 }, d = 6;auto res = sln.minDifficulty(jobDifficulty, d);Assert(843, res);}
}

2023年2月 第一版

class Solution {
public:
int minDifficulty(vector& jobDifficulty, int d) {
std::unordered_map<int, std::unordered_map<int, int>> mDayMaxJobIndexs;
mDayMaxJobIndexs[1][0] = jobDifficulty[0];
for (int i = 1; i < jobDifficulty.size(); i++)
{
std::unordered_map<int, std::unordered_map<int, int>> dp;
for (const auto& it : mDayMaxJobIndexs)
{
const int& iDay = it.first;
for (const auto& ij : it.second)
{
const int& iMaxJobIndex = ij.first;
const int& iValue = ij.second;
if (jobDifficulty[i] > jobDifficulty[iMaxJobIndex])
{
Test(dp, iDay, i, iValue + jobDifficulty[i] - jobDifficulty[iMaxJobIndex] );
}
else
{
Test(dp, iDay, iMaxJobIndex, iValue);
}
if (iDay < d)
{
Test(dp, iDay + 1, i, iValue + jobDifficulty[i]);
}
}
}
dp.swap(mDayMaxJobIndexs);
}
auto it = mDayMaxJobIndexs.find(d);
if (mDayMaxJobIndexs.end() == it)
{
return -1;
}
int iMin = INT_MAX;
for (const auto& ij : it->second)
{
iMin = min(iMin, ij.second);
}
return iMin;
}
void Test(std::unordered_map<int, std::unordered_map<int, int>>& dp, int iDay, int iMaxJobIndex, int iValue )
{
auto it = dp[iDay].find(iMaxJobIndex);
if (dp[iDay].end() == it)
{
dp[iDay][iMaxJobIndex] = iValue;
}
else
{
it->second = min(it->second, iValue);
}
}
};

2023年8月版

class Solution {
public:
int minDifficulty(vector& jobDifficulty, int d) {
m_c = jobDifficulty.size();
vector<vector> vMax(m_c, vector(m_c)); //vMax[i][i]表示[i,j]的最大值
for (int left = m_c - 1; left >= 0; left–)
{
vMax[left][left] = jobDifficulty[left];
for (int r = m_c-1 ; r > left; r–)
{
vMax[left][r] = max(jobDifficulty[left], vMax[left + 1][r]);
}
}
vector pre(m_c + 1, INT_MAX);//pre[i]表示已经处理了i项的最小难度
pre[0] = 0;
for (int i = 0; i < d; i++)
{
vector dp(m_c + 1, INT_MAX);
for (int cur = i + 1; cur <= m_c; cur++)
{
for (int pr = 0; pr < cur; pr++)
{
if (INT_MAX == pre[pr])
{
continue;
}
dp[cur] = min(dp[cur], pre[pr] + vMax[pr][cur - 1]);
}
}
pre.swap(dp);
}
return (INT_MAX == pre.back()) ? -1 : pre.back();
}
int m_c;
};

2023年8月 第二版

class Solution {
public:
int minDifficulty(vector& jobDifficulty, int d) {
m_c = jobDifficulty.size();
if (m_c < d)
{
return -1;
}
vector<vector> vMax(m_c, vector(m_c)); //vMax[i][i]表示[i,j]的最大值
for (int left = m_c - 1; left >= 0; left–)
{
vMax[left][left] = jobDifficulty[left];
for (int r = m_c-1 ; r > left; r–)
{
vMax[left][r] = max(jobDifficulty[left], vMax[left + 1][r]);
}
}
vector pre(m_c , INT_MAX);//pre[i]表示已经处理了i项的最小难度
for (int i = 0; i < d; i++)
{
vector dp(m_c , INT_MAX);
std::stack<std::tuple<int, int, int>> sta;//工作难度 dp[0]到当前的最小难度 被pop的pre最小难度
if (i > 0)
{
dp[i] = jobDifficulty[i] + pre[i - 1];
sta.emplace(jobDifficulty[i], dp[i], pre[i -1]);
}
else
{
dp[i] = jobDifficulty[i];
sta.emplace(jobDifficulty[i], dp[i], 0);
}
for (int cur = i+1; cur < m_c; cur++)
{
const int& curDiff = jobDifficulty[cur];
int iPrePopMin = pre[cur - 1];
while (sta.size() && (get<0>(sta.top()) <= curDiff))
{
iPrePopMin = min(iPrePopMin, get<2>(sta.top()));
sta.pop();
}
int curRet = (INT_MAX ==iPrePopMin) ? INT_MAX : (curDiff+iPrePopMin);
if (sta.size())
{
curRet = min(curRet, get<1>(sta.top()));
}
dp[cur] = curRet;
sta.emplace(curDiff, curRet, iPrePopMin);
}
pre.swap(dp);
}
return (INT_MAX == pre.back()) ? -1 : pre.back();
}
int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/449762.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32控制DHT11温湿度传感器模块获取温湿度数据

时间记录&#xff1a;2024/1/29 一、DHT11引脚介绍 &#xff08;1&#xff09;VCC&#xff1a;电源引脚&#xff0c;3.3-5.5V &#xff08;2&#xff09;DATA&#xff1a;数据输入输出引脚 &#xff08;3&#xff09;NC&#xff1a;保留引脚&#xff0c;悬空即可 &#xff08;…

思科交换机调试流程介绍(主要适用于OEM的思科的浪潮FS6700)

文章目录 1、光纤交换机配置流程2、交换机初始化 2-1、 默认管理地址 2-2、 更改默认管理地址 2-3、 远程登录模式 2-4、 更改用户名 3、VSAN 3-1、什么是VSAN 3-2、关于 VSAN 的一些主意事项 3-3、配置VSAN 3-4、配置验证…

获取真实 IP 地址(二):绕过 CDN(附链接)

一、DNS历史解析记录 DNS 历史解析记录指的是一个域名在过去的某个时间点上的DNS解析信息记录。这些记录包含了该域名过去使用的IP地址、MX记录&#xff08;邮件服务器&#xff09;、CNAME记录&#xff08;别名记录&#xff09;等 DNS 信息。DNS 历史记录对于网络管理员、安全研…

Multisim14.0仿真(四十四)基于74LS148的8路呼叫器设计

一、74LS148简介: 74LS148是一款具有扩展功能的8-3线优先编码器,有8个信号输入端、3个二进制码输出端、1个输入使能源端、1个选择输出端和1个扩展端。 二、74LS148工作原理 74LS148有8个信号输入端,3个二进制码输出端、输入使能EI、输出使能EO和优先代码工作状态标志GS。EI…

matlab|【EI复现】日前日内多阶段多时间尺度源荷储协调调度

目录 一、模型 二、程序运行 三、下载链接 多阶段多时间尺度的协调调度的优势是考虑新能源出力的波动性与随机性&#xff0c;减少需求响应负荷的不确定性对电网制定的日前调度计划准确性造成的影响&#xff0c;也就是能够更加精准的进行调度和分析&#xff0c;优化结果的可用…

vio参数文件内相机imu参数的修改

imu标定工具 https://github.com/mintar/imu_utils网络上有各种IMU校准工具和校准教程&#xff0c;曾经花费了巨大精力跟着各种教程去跑校准。 然而&#xff0c;标定使用的数据都是在静止状态下录制的&#xff0c;我们在使用vio或者imu-cam联合标定的时候&#xff0c;imu确是处…

机器学习_14_多分类及多标签分类算法

文章目录 1 单标签二分类问题1.1 单标签二分类算法原理1.2 Logistic算法原理 2 单标签多分类问题2.1 单标签多分类算法原理2.2 Softmax算法原理2.3 ovo2.4 ovr2.5 OvO和OvR的区别2.6 Error Correcting 3 多标签算法问题3.1 Problem Transformation Methods3.1.1 Binary Relevan…

Linux信号详解~

目录 前言 一、初识信号 二、信号的概念 三、信号的发送与捕捉 3.1 信号的发送 3.1.1 kill 命令 3.1.2 kill 函数 3.1.3 raise函数 3.1.4 abort函数 3.2 信号的捕捉 3.2.1 signal函数 3.2.2 sigaction函数 3.2.3 图示 四、信号的产生 4.1 硬件异常产生信号 4.2 …

使用雨云的虚拟主机建设兰空图床

安装前须知 因需要安装FileInfo拓展&#xff0c;因此你需要购买2048MB及以上运存的服务器。 确保MySQL版本高于或等于5.7 什么是兰空图床&#xff1f; Lsky Pro 是一个用于在线上传、管理图片的图床程序&#xff0c;中文名&#xff1a;兰空图床&#xff0c;你可以将它作为自己…

latex multirow学习

今天搞了一晚上的这个multirow&#xff0c;总算弄出来了几个比较好的例子&#xff0c;主要是这个multirow的语法我没看懂&#xff0c;这个逻辑我是没理解&#xff0c;就很尴尬&#xff0c;一改就报错&#xff0c;只能先弄几个例子&#xff0c;自己慢慢试 \documentclass{artic…

【计网·湖科大·思科】实验七 路由信息协议RIP、开放最短路径优先协议OSPF、边界网关协议BGP

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的很重要&…

【Spark系列6】如何做SQL查询优化和执行计划分析

Apache Spark SQL 使用 Catalyst 优化器来生成逻辑执行计划和物理执行计划。逻辑执行计划描述了逻辑上如何执行查询&#xff0c;而物理执行计划则是 Spark 实际执行的步骤。 一、查询优化 示例 1&#xff1a;过滤提前 未优化的查询 val salesData spark.read.parquet(&quo…