Opencv(C++)学习 TBB与OPENMP的加速效果实验与ARM上的实践(二)

在上一篇文章中,我们成功验证了Intel Threading Building Blocks (TBB) 与 OpenMP 在多线程并行处理方面的加速潜力。为了更深入地理解这些技术在实际应用场景中的效能提升,接下来我们将目光转向目标开发板环境,进一步探究这两种框架在嵌入式系统上的实际加速效果。
一、OPENMP加速效果测试
在探讨OPENMP对性能提升的影响时,我们首先遇到了一个有趣的插曲。通常情况下,OpenMP作为一项编译器层面的支持特性,只需在编译阶段通过简单的命令行标志即可启用,例如在使用make构建时追加-fopenmp参数,或在CMake项目中配置如set(CMAKE_CXX_FLAGS “-fopenmp”),即可轻松为项目开启并行处理能力。

然而,在针对RV1106平台的交叉编译环境中,我们发现原生的交叉编译工具链并不支持OpenMP功能。通过执行arm-rockchip830-linux-uclibcgnueabihf-gcc -v来查看编译器详细信息时,注意到其构建选项中包含了–disable-libgomp,这意味着该编译器在构建之初就已排除了对OpenMP库的支持。这可能是因为RV1106芯片本身为单核架构,考虑到硬件资源有限,制造商在设计工具链时并未考虑多线程并行处理的需求。
RV1106交叉编译器能力
尽管如此,面对手头仅有的嵌入式开发环境限制,我们并未止步于此。经过深入研究和探索,最终成功实现了对该交叉编译器OpenMP支持的集成。虽然整个过程尚未完全优化与标准化,此处暂且略过具体实现细节,我们将简要概述如何使编译器支持OpenMP以及随后进行的测试效果评估。

交叉编译器不支持的临时解决办法:
1、从源码编译openmp:
官网介绍:https://www.openmp.org/specifications/
下载地址:https://github.com/OpenMP/sources
编译过程比较简单:在源码中将makefile的configure 后面指定当前的编译工具链路径和生产路径。

all: mkdir src/libgomp/build ;          \cd src/libgomp/build &&            \../configure --host=arm-rockchip830-linux-uclibcgnueabihf && \$(MAKE)

2、编译好的libgomp放入工具链
我生成的libgomp 路径在 libgomp-master\src\libgomp\build.libs 下面,将其中的
libgomp.so libgomp.so.1 libgomp.so.1.0.0 以及上一级目录的libgomp.spec 一共四个文件拷贝到工具链的以下两个路径:

/arm-rockchip830-linux-uclibcgnueabihf/arm-rockchip830-linux-uclibcgnueabihf/lib/lib
/arm-rockchip830-linux-uclibcgnueabihf/arm-rockchip830-linux-uclibcgnueabihf/sysroot/lib/

编译测试:
在编译过程中,直接加入-fopenmp指令:

arm-rockchip830-linux-uclibcgnueabihf-g++ OptCvTestWin.cpp -o test -fopenmp

即可生成可执行文件。
此处不用cmake编译,因为写好的cmakelist中配置的-fopenmp不生效。

加速效果:

# ./test cv F1 Time = 79  rslt 3.20518e+10cv F2 Time = 153  rslt 3.20518e+10cv F1 Time = 91  rslt 2.99779e+10cv F2 Time = 166  rslt 2.99779e+10cv F1 Time = 76  rslt 2.93042e+10cv F2 Time = 166  rslt 2.93042e+10cv F1 Time = 75  rslt 3.1813e+10cv F2 Time = 158  rslt 3.1813e+10cv F1 Time = 75  rslt 3.18925e+10cv F2 Time = 177  rslt 3.18925e+10cv F1 Time = 81  rslt 3.07783e+10cv F2 Time = 158  rslt 3.07783e+10cv F1 Time = 90  rslt 3.05833e+10cv F2 Time = 156  rslt 3.05833e+10cv F1 Time = 76  rslt 2.83669e+10cv F2 Time = 158  rslt 2.83669e+10cv F1 Time = 91  rslt 3.42625e+10cv F2 Time = 170  rslt 3.42625e+10cv F1 Time = 75  rslt 3.44049e+10cv F2 Time = 163  rslt 3.44049e+10

对比了多线程方案F1与常规单线程方案F2的执行速度(单位ms)。实验发现,随着OpenMP线程数从2增至10,F1的加速效果逐步提升;但超过10个线程后,加速收益不再明显增加。这表明存在一个最优线程数阈值,在该范围内使用OpenMP能有效提高程序性能。

测试的代码放出来:
整体上跑10遍观察效果,选取其中一部分数据打印看结果是否一致。

#include <fstream>
#include <iostream>
#include <vector>
//#include <opencv2/opencv.hpp>
//#include "libgomp.h"
#include <future>
#include <thread>
//#include <tbb/parallel_for.h>
//#include <tbb/blocked_range.h>
#include <chrono>
//using namespace cv;
using namespace std;typedef std::chrono::system_clock::time_point SYS_TIME;
SYS_TIME getClock()
{return std::chrono::system_clock::now();
}
double getMsTime(SYS_TIME start, SYS_TIME end)
{return  std::chrono::duration_cast<std::chrono::milliseconds>(end-start).count();
}
int main()
{for (int j =0; j <10; j++)
{const int iCnt = 1000000;std::vector<float> data1(iCnt);std::vector<float> data2(iCnt);for (float i = 0; i < iCnt; ++i) {data1[i] = rand(); // 假设填充了随机整数data2[i] = data1[i];}float fv1=0;SYS_TIME start = getClock();
#pragma omp parallel num_threads(4){
#pragma omp forfor(int i = 0; i < iCnt; i++){data1[i]+=i;if(i>iCnt/3&&i<iCnt/3+30)fv1+=data1[i];}}cout << " cv F1 Time = " << getMsTime(start, getClock()) <<"  rslt "<< fv1  << endl;float fv2=0;SYS_TIME start2 = getClock();{for (float i = 0; i < iCnt; i++){data2[i]+=i;if(i>iCnt/3&&i<iCnt/3+30)fv2+=data2[i];}}cout << " cv F2 Time = " << getMsTime(start2, getClock()) <<"  rslt "<< fv2  << endl;
}    return 0;
}

后记:
在本阶段的技术探索中,我们遇到了CMakeLists.txt中设置的OpenMP编译选项未能生效的问题。尽管GPT暂时无法给出具体原因,但当前的重点已转向验证OpenMP的实际加速效果,并发现尽管其在基准测试中表现出显著优势,但在实际业务工程应用时却遭遇了挑战。由于现有工程完全依赖于由CMake构建的Makefile体系,直接修改Makefile以整合OpenMP支持无疑会增加额外的工作量。
在这里插入图片描述
1、一种解决方案是联系RK(瑞芯微)厂家,请求提供一个内建OpenMP支持的交叉编译器版本,或者自行构建这样一个工具链。然而,鉴于目前的知识储备尚不足以完成这一任务,该方案暂时尚未实施
2、另个一个可行的方案是,将预先编译好的libgomp库作为静态或动态链接库与可执行文件进行链接。这种方法虽然理论上可行,但在调用OpenMP接口和管理库依赖方面可能会遇到复杂性问题,需要进一步技术评估。

接下来的步骤,我们将把注意力转向Intel Threading Building Blocks (TBB) 并行编程库,计划对其进行编译和测试验证,以对比分析其对项目性能提升的效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/451293.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《幻兽帕鲁》好玩吗?幻兽帕鲁能在Mac上运行吗?

最近一款叫做《幻兽帕鲁》的新游戏走红&#xff0c;成为了Steam游戏平台上&#xff0c;连续3周的销量冠军&#xff0c;有不少Mac电脑用户&#xff0c;利用Crossover成功玩上了《幻兽帕鲁》&#xff0c;其实Crossover已经支持很多3A游戏&#xff0c;包括《赛博朋克2077》《博德之…

外卖单店小程序模板/小程序前端模板

外卖单店小程序模板简介&#xff1a;外卖单店小程序前端模板 外卖单店小程序模板截图

Java语法学习坐标体系/绘图

Java语法学习坐标体系/绘图 大纲 基本介绍绘图 具体案例 1. 基本介绍 2.绘图 基本介绍&#xff1a; 注意每次自动调用&#xff0c;就会重新执行一次paint方法里的所有程序 先自定义面板 创建一个类继承JPanel&#xff0c;然后重写构造器&#xff0c;paint方法 class M…

微信小程序(三十三)promise异步写法

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.promise异步与普通异步的写法区别 2.promise异步的优势 源码&#xff1a; index.wxml <view class"preview" bind:tap"onChoose"><image src"{{avatar}}" mode"…

2V2无人机红蓝对抗仿真

两架红方和蓝方无人机分别从不同位置起飞&#xff0c;蓝方无人机跟踪及击毁红方无人机 2020a可正常运行 2V2无人机红蓝对抗仿真资源-CSDN文库

在jetbrains IDEA/Pycharm/Android Studio中安装官方rust插件,开始rust编程

在idea插件市场搜索rust&#xff1a;JetBrains Marketplace &#xff0c;就可以找到rust插件&#xff1a; jetbrains官方rust插件地址&#xff1a;[Deprecated] Rust - IntelliJ IDEs Plugin | Marketplace 直接在idea中搜索rust好像是搜不到的&#xff1a; 需要在这个插件市场…

RabbitMQ_00000

MQ的相关概念 RabbitMQ官网地址&#xff1a;https://www.rabbitmq.com RabbitMQ API地址&#xff1a;https://rabbitmq.github.io/rabbitmq-java-client/api/current/ 什么是MQ&#xff1f; MQ(message queue)本质是个队列&#xff0c;FIFO先入先出&#xff0c;只不过队列中…

俩种方法解决 VScode中 NPM 脚本消失,NPM 脚本未显示在资源管理器侧栏中

npm脚本是npm包管理器的一个功能&#xff0c;允许开发者在package.json文件中定义一系列命令脚本&#xff0c;用于执行各种开发任务。 今天打开准备运行的时候发现找不到NPM脚本了&#xff0c;左侧的一栏完全没有显示&#xff0c;在网上查阅了很多资料后总结出俩个方法可以用来…

多维时序 | Matlab实现CNN-RVM卷积神经网络结合相关向量机多变量时间序列预测

多维时序 | Matlab实现CNN-RVM卷积神经网络结合相关向量机多变量时间序列预测 目录 多维时序 | Matlab实现CNN-RVM卷积神经网络结合相关向量机多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现CNN-RVM卷积神经网络结合相关向量机多变量时间序…

【前端模板】bootstrap5实现高端手表网页Chrono(适用电商,附带源码)

一、需求分析 高端手表网页是指专门销售高端手表的在线平台或网站。这些网页旨在向消费者展示和销售高级手表品牌的产品。以下是一些常见的功能&#xff1a; 产品展示&#xff1a;高端手表网页提供详细的产品页面&#xff0c;展示不同品牌和型号的高级手表。这些页面通常包括产…

贪心算法篇

“靠漫步&#xff0c;将生趣填饱~” 贪心算法简介&#xff1f; 贪心算法&#xff08;Greedy Algorithm&#xff09;&#xff0c;也称为贪婪算法&#xff0c;是一种在解决问题时采取贪心策略的方法。其基本原理是很简单的&#xff1a; “在每个决策点上都选择当下看似最好的选项…

vulhub中Adminer ElasticSearch 和 ClickHouse 错误页面SSRF漏洞复现(CVE-2021-21311)

Adminer是一个PHP编写的开源数据库管理工具&#xff0c;支持MySQL、MariaDB、PostgreSQL、SQLite、MS SQL、Oracle、Elasticsearch、MongoDB等数据库。 在其4.0.0到4.7.9版本之间&#xff0c;连接 ElasticSearch 和 ClickHouse 数据库时存在一处服务端请求伪造漏洞&#xff08…