随机图论基础

一,随机图、随机图空间

1,随机图

一个n个点的无向图,最多有s=n(n-1)/2条边。

每条边都有一定的概率存在,有一定概率不存在,那么每个图都有一个出现概率。

2,随机图空间

一共有2^s种不同的图,每个图看作一个点,所有的图构成一组互斥事件,总概率是1,这样就构成一个概率空间,记做G(n,p)

根据这一组事件的概率分布类型,随机图空间也分为不同的类型。

二,二项分布随机图空间

1,二项分布随机图

假设每条边都有p的概率是存在的,有1-p的概率是不存在的,那么一个有k条边的图出现的概率是p^k(1-p)^{s-k}

2,二项分布随机图空间

所有有k条边的图出现的概率总和是\binom{s}{k}p^k(1-p)^{s-k}

所有图出现的概率总和是\sum _{0<=k<=s}\binom{s}{k}p^k(1-p)^{s-k}=1

3,简单规律

对于二项分布随机图空间G(n,0),空图以1的概率出现,其他图概率是0

对于二项分布随机图空间G(n,1),完全图以1的概率出现,其他图概率是0

4,条件概率空间

给定n和一个有k条边的图,对于不同的概率p,该图的出现概率p^k(1-p)^{s-k}有不同的取值。

当p=k/s时,概率p^k(1-p)^{s-k}取到最大值。

三,随机图子空间

1,随机图子空间

把随机空间中的一部分点取出来,维持原有的概率比例,乘以一个系数,使得总和仍然为1,得到的新空间称为随机图子空间

2,二项分布随机图空间的固定边数子空间

一个n个点的无向图,最多有s=n(n-1)/2条边。

一共有2^s种不同的图,其中有e条边的图一共有\binom{s}{e}种。

\binom{s}{e}种有e条边的图构成一个随机图子空间,其中每个图出现的概率都是1/\binom{s}{e}

3,随机二分图子空间

考虑完全二分图的边随机出现,得到的是一个随机二分图子空间。

四,随机图参数

随机图参数是图论特有的统计特征。

随机图参数的最可能的值就是均值附近。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/452695.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeAPI 后端接口开发 - 发布、下线接口

一、上线接口&#xff08;仅管理员&#xff09; 1. 校验请求参数 2. 判断&#xff08;测试&#xff09;接口是否可以调用 引入调用接口的客户端&#xff08;自己写的 SDK&#xff09;注入客户端实例调用接口 3. 修改数据库中接口的状态 /*** 上线&#xff08;发布&#xff…

Linux一些实用操作

学习笔记&#xff0c;记录以下课程中关于Linux的一些实用操作。黑马程序员新版Linux零基础快速入门到精通&#xff0c;全涵盖linux系统知识、常用软件环境部署、Shell脚本、云平台实践、大数据集群项目实战等_哔哩哔哩_bilibili 目录 1 各类小技巧&#xff08;快捷键&#xff…

[C#][opencvsharp]opencvsharp sift和surf特征点匹配

SIFT特征和SURF特征比较 SIFT特征基本介绍 SIFT(Scale-Invariant Feature Transform)特征检测关键特征&#xff1a; 建立尺度空间&#xff0c;寻找极值关键点定位&#xff08;寻找关键点准确位置与删除弱边缘&#xff09;关键点方向指定关键点描述子 建立尺度空间&#xff0…

Java基础之反射

反射目录&#xff0c;重点的顶层接口 1. 顶层接口1.1 概述&#xff08;重点&#xff09;1.2 Member1.3 AnnotatedElement1.4 Type1.4.1 概述&#xff08;重点&#xff09;1.4.2 GenericDeclaration1.4.3 TypeVariable1.4.4 ParameterizedType1.4.5 WildcardType上下界解释 1.4.…

Linux 驱动开发基础知识——设备树的语法驱动开发基础知识(九)

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;Vir2021GKBS &#x1f43c;本文由…

SpringBoot 登录检验JWT令牌 生成与校验

JWT官网 https://jwt.io/ 引入依赖 <dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt</artifactId><version>0.9.1</version> </dependency>设置过期时间 LocalDateTime localDateTime LocalDateTime.now().…

前端开发中不同语言【react-i18next】

目录 查看并设置语言 单页面&#xff1a;html lang ​编辑 浏览器 自定义翻译&#xff1a;react-i18next 设置 模块&#xff1a;staticData.ts 散(重复利用)&#xff1a;命名空间.json 应用 准备 html标签 查看并设置语言 单页面&#xff1a;html lang 英语: <…

HTML+CSS:全景轮播

效果演示 实现了一个简单的网页布局&#xff0c;其中包含了五个不同的盒子&#xff0c;每个盒子都有一个不同的背景图片&#xff0c;并且它们之间有一些间距。当鼠标悬停在某个盒子上时&#xff0c;它的背景图片会变暗&#xff0c;并且文字会变成白色。这些盒子和按钮都被放在一…

【Java】【SSE】【VUE】实现调用千帆大模型,实现打字效果

没有废话。只有演示、和源码地址 效果演示 源码地址 qianfan-sse-demo: 基于https://gitee.com/codinginn/chatgpg-sse-demo-springboot-vue改动

电动汽车充放电V2G模型(matlab代码)

目录 1 主要内容 1.1 模型背景 1.2 目标函数 1.3 约束条件 2 部分代码 3 效果图 4 下载链接 1 主要内容 本程序主要建立电动汽车充放电V2G模型&#xff0c;采用粒子群算法&#xff0c;在保证电动汽车用户出行需求的前提下&#xff0c;为了使工作区域电动汽车尽可能多的消…

MySQL之谈谈MySQL里的日志

文章目录 前言一、SQL是如何做更新操作的二、MySQL中的redo log三、MySQL中的binlog四、聊聊两阶段提交总结 前言 上一章我们讲了一条SQL是如何做查询的&#xff0c;其中经历了许多步骤。这次来讲讲一条SQL是如何做更新操作的。 常有大佬说他可以把MySQL恢复到半个月内任意一秒…

openGauss学习笔记-214 openGauss 性能调优-确定性能调优范围

文章目录 openGauss学习笔记-214 openGauss 性能调优-确定性能调优范围214.1 性能因素214.2 调优范围确定 openGauss学习笔记-214 openGauss 性能调优-确定性能调优范围 数据库性能调优通常发生在用户对业务的执行效率不满意&#xff0c;期望通过调优加快业务执行的情况下。正…