【目标跟踪】3D点云跟踪

文章目录

  • 一、前言
  • 二、代码目录
  • 三、代码解读
    • 3.1、文件描述
    • 3.2、代码框架
  • 四、关联矩阵计算
    • 4.1、ComputeLocationDistance
    • 4.2、ComputeDirectionDistance
    • 4.3、ComputeBboxSizeDistance
    • 4.4、ComputePointNumDistance
    • 4.5、ComputePointNumDistance
    • 4.6、result_distance
  • 五、结果

一、前言

  1. 前博客一直介绍的是视觉方向的跟踪。不过在如今智能驾驶领域,雷达感知仍然占据主要部分。今天来分享下点云3D跟踪。
  2. 视觉跟踪输入就是目标检测的结果。雷达跟踪输入可以是点云检测的结果,也可以是点云聚类的结果。除了一些数据结构、匹配计算,雷达跟踪算法与前面介绍视觉跟踪方法大体相同。
  3. 本篇主要探讨雷达如何进行匹配、关联计算,同时解析下代码结构。参考的是 apollo 代码,整体效果还不错。

二、代码目录

雷达跟踪所有的代码文件
在这里插入图片描述

三、代码解读

3.1、文件描述

文件跳转较多,新手读起代码可能有点吃力。最好记录下每个文件是干什么的,有个大致印象即可。

.h文件描述
object_track.hclass ObjectTrackSet class ObjectTrack
object.h(1) struct Object; (2) struct SensorObjects
tracked_object.hstruct TrackedObject 数据类型 框、点云
hm_tracker.hstruct TrckerParm 全是参数
kalman.h卡尔曼滤波 预测、状态、运动方程
hungarian_matcher.h目标匹配
track_object_distance.h计算匹配矩阵权重
geometry_util.h计算所有点质心、计算3D框、数据转化等
feature_descriptor.h计算目标的形状特征

一些补充:

barycenter 点云几何中心点(质心)

目标框 direction 朝向角 默认状态(1, 0, 0)

目标框 size 长宽高 (length, width, height)

目标状态 (x, y, z, vx, vy, vz)

状态方程 匀速 x = x + v * t

3.2、代码框架

阅读代码整体顺序如下

(1)跟踪

hm_tracker.cpp

bool HmObjectTracker::Track()

A 初始化 B 数据转化 输入 C 预测 D 匹配 E 更新 F 结果

hm_tracker.cpp 文件 Track 函数基本就是整个运算主函数了

(2)匹配

hungarian_matcher.cpp

void HungarianMatcher::Match()

A 计算关联矩阵 B 计算连接的组件 C 匹配每个子图

这里面有很多种匹配方式,这里主要运用的是A 计算关联矩阵

(3)关联矩阵计算

track_object_distance.cpp

float TrackObjectDistance::ComputeDistance()

这个函数就是我们这次的主角了。计算目标与目标的距离,然后进行匈牙利匹配。


四、关联矩阵计算

这部分是核心,我们来好好研究下。截取部分代码

double TrackObjectDistance::s_location_distance_weight_ = 0.6;
double TrackObjectDistance::s_direction_distance_weight_ = 0.2;
double TrackObjectDistance::s_bbox_size_distance_weight_ = 0.1;
double TrackObjectDistance::s_point_num_distance_weight_ = 0.1;
double TrackObjectDistance::s_histogram_distance_weight_ = 0.5;// new_object测量 track_predict预测 
float TrackObjectDistance::ComputeDistance(ObjectTrackPtr track, const Eigen::VectorXf& track_predict,const std::shared_ptr<TrackedObject>& new_object) {// Compute distance for given track & objectfloat location_distance = ComputeLocationDistance(track, track_predict, new_object);  // 分速度慢 速度快float direction_distance = ComputeDirectionDistance(track, track_predict, new_object);float bbox_size_distance = ComputeBboxSizeDistance(track, new_object);float point_num_distance = ComputePointNumDistance(track, new_object);float histogram_distance = ComputeHistogramDistance(track, new_object);float result_distance = s_location_distance_weight_ * location_distance +s_direction_distance_weight_ * direction_distance +s_bbox_size_distance_weight_ * bbox_size_distance +s_point_num_distance_weight_ * point_num_distance +s_histogram_distance_weight_ * histogram_distance;return result_distance;
}

4.1、ComputeLocationDistance

计算中心点距离差 取值范围[0, + ∞ +\infty +

当current_object 中 V <= 2m/s 欧式距离

在这里插入图片描述

当current_object 中 V > 2m/s 根据速度方向分解 以速度方向与垂直速度方向建立坐标系。投影速度方向的偏差为1/2倍距离偏差, 投影垂直速度方向的偏差为2倍距离偏差。平方开方求最终偏差。

在这里插入图片描述

可以简单理解为:当目标高速行驶时,在速度方向上的位移偏差会稍大,为了补偿这部分偏差,采取降低方向上的位移权重计算最终位移偏差(我是这么理解的)。

4.2、ComputeDirectionDistance

计算方向上的距离 取值范围[0,2]

计算位移在速度方向上的余弦值cos_theta 最终return 1- cos_theta

在这里插入图片描述

这个也比较好理解。当物体与检测物体位移差方向与预测速度方向相近时,此时更相信是同一个目标。cos值为1时,说明位移偏差与预测速度同方向,则认为这两物体更容易匹配。

当位移偏差为0时,这里有设定默认cos值为0.994。

4.3、ComputeBboxSizeDistance

取值范围[0,1]

这个稍微有点复杂,待我娓娓道来

old_dir 当前目标的方向,默认偏航为0时 默认值为(1, 0, 0)

new_idr 检测目标的方向

old_size 当前目标的尺寸 (bbox.length, bbox.width, bbox.height)

new_size 检测目标的尺寸

在这里插入图片描述
nter&pos_id=img-506WdR2l-1706774251770)

计算dot_00, dot_01。dot_00 可以理解为两目标方向夹角,dot_01理解为目标与另一目标垂直方向夹角。这里不考虑超过90度的夹角,因为目标方向可以是alpha 或 180 - alpha。

在这里插入图片描述

为什么两种情况?可以理解为把目标长与宽对齐(我们事先并不知道目标对应的长宽),先根据目标角度的状态判定。当角度小于45°时,目标长与另一目标的长对齐。否则目标长与另一个目标宽对齐,最终计算长或者宽差值的比例,取最小值当做最终值。

4.4、ComputePointNumDistance

取值范围[0,1]

这个公式比较简单

在这里插入图片描述

这个很容易理解,点云个数越相近,越容易匹配上。

4.5、ComputePointNumDistance

取值范围[0,3]

直方图距离 把目标所有点云以当个坐标轴分为10个区间 再以xyz三轴共分为30个区间。

如果点云都是均匀排布那么目标形状特征 shape_features = [0.1] * 30

shape_features具体计算过程。以x轴为例,y轴、z轴同理。

计算目标点云 x轴最值,把区间划分为10等分。记录所有点在10个区间点云个数。

如果完全均匀排布则结果为

shape_feature_x = [0.1]*10

shape_features = shape_feature_x + shape_feature_y + shape_feature_z

知道了目标形状特征的定义,可得

在这里插入图片描述

4.6、result_distance

最终距离为上述计算的5个距离量乘以对应系数和

在这里插入图片描述

五、结果

由于 rviz 无法显示点云跟踪结果,那我们把雷达跟踪结果 topic 录制下来,然后再可视化。当然也可以在过程中保存图片。

在这里插入图片描述

整体跟踪效果不错。赞!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/454071.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对称二叉树

给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#xff1a;false提示&#xff1a; 树中节点数目在范围…

zabbix server/agent源码编译成rpm包(通用版-小白教程)

前言 工作环境需要用到很多信创的操作系统&#xff0c;zabbix agent2的官方没有现成的包可用&#xff0c;网上巴拉了一下找到zabbix agent2通用版编译成rpm包的方法 思路&#xff1a;假如当你有一批ky10_x86的机器需要配套的zabbix agent的rpm包&#xff0c;那就找一台ky10_x…

在VM虚拟机上搭建MariaDB数据库服务器

例题&#xff1a;搭建MariaDB数据库服务器&#xff0c;并实现主主复制。 1.在二台服务器中分别MariaDB安装。 2.在二台服务器中分别配置my.cnf文件&#xff0c;开启log_bin。 3.在二台服务器中分别创建专用于数据库同步的用户replication_user&#xff0c;并授权SLAVE。&#x…

车企MQ人工智能应用创新,比我们想象的要猛!

上期&#xff0c;迅易科技AI智能应用板块制造行业客户总监付雨鑫Mary和我们讲述了国内某配胶龙头企业进行AI配胶技术的智能创新《“制造”变“智造”&#xff0c;才是企业提效的成功密码&#xff01;》&#xff0c;制造行业的智能应用创新引起了许多用户的兴趣。 那么&#xff…

视觉SLAM十四讲学习笔记(一)初识SLAM

目录 前言 一、传感器 1 传感器分类 2 相机 二、经典视觉 SLAM 框架 1 视觉里程计 2 后端优化 3 回环检测 4 建图 5 SLAM系统 三、SLAM 问题的数学表述 四、Ubuntu20.04配置SLAM十四讲 前言 SLAM: Simultaneous Localization and Mapping 同时定位与地图构建&#…

【动态规划】【状态压缩】【2次选择】【广度搜索】1494. 并行课程 II

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 状态压缩 广度优先搜索 LeetCode1494. 并行课程 II 给你一个整数 n 表示某所大学里课程的数目&#xff0c;编号为 1 到 n &#xff0c;数组 relations 中&#xff0c; relations[i] [xi, yi] 表示一个先修课的关系&am…

电机控制系列模块解析(第四篇)—— 参数辨识

某人刚开始就问我离线参数辨识&#xff08;也称为参数自学习&#xff09;的问题&#xff0c;那就先入手讲一讲这个。 参数辨识分为&#xff1a;离线辨识和在线辨识。 离线辨识&#xff1a;包括了定子电阻辨识、定子电感辨识、初始位置的辨识、EMF辨识、转动惯量辨识、逆变器非…

【jenkins】主从机制及添加Slave节点操作

一、master-slave 日常构建Jenkins任务中&#xff0c;会经常出现下面的情况&#xff1a; 自动化测试需要消耗大量的 CPU 和内存资源&#xff0c;如果服务器上还有其他的服务&#xff0c;可能会造成卡顿或者宕机这样的情况&#xff1b; Jenkins 平台上除了这个项目&#xff0c…

react和antd学习笔记

概论 react是前端框架&#xff0c;antd是组件库。前端框架和组件库的区别与联系 nodejs 脚本语言需要一个解析器才能运行&#xff0c;JavaScript是脚本语言&#xff0c;在不同的位置有不一样的解析器&#xff0c;如写入html的js语言&#xff0c;浏览器是它的解析器角色。而对…

手写分布式存储系统v0.3版本

引言 承接 手写分布式存储系统v0.2版本 &#xff0c;今天开始新的迭代开发。主要实现 服务发现功能 一、什么是服务发现 由于咱们的服务是分布式的&#xff0c;那从服务管理的角度来看肯定是要有一个机制来知道具体都有哪些实例可以提供服务。举个例子就是&#xff0c;张三家…

让IIS支持SSE (Server Sent Events)

本文只探讨IISPython网站的情况&#xff0c;对于asp.net也应该不用这么麻烦。 先上结论&#xff1a;用反向代理&#xff1a; IIS URL Rewrite waitress Waitress是一个纯python编写独立的WSGI服务器&#xff0c;功能比Gunicorn弱一些&#xff0c;但可以运行在windows平台上&…

【初识爬虫+requests模块】

爬虫又称网络蜘蛛、网络机器人。本质就是程序模拟人使用浏览器访问网站&#xff0c;并将需要的数据抓取下来。爬虫不仅能够使用在搜索引擎领域&#xff0c;在数据分析、商业领域都得到了大规模的应用。 URL 每一个URL指向一个资源&#xff0c;可以是一个html页面&#xff0c;一…