题目:
from Crypto.Util.number import *
m=bytes_to_long(b'XXXX')
e=65537
p=getPrime(1024)
q=getPrime(1024)
n=p*q
print(p)
c=pow(m,e,n)
P=p>>340
print(P)
a=pow(P,3,n)
print("n=",n)
print("c=",c)
print("a=",a)
#n= 24479907029118467064460793139240403258697681144532146836881997837526487637306591893357774423547391867013441147680031968367449693796015901951120514250935018725570026327610524687128709707340727799633444550317834481416507364804274266363478822257132586592232042108076935945436358397787891169163821061005102693505011197453089873909085170776511350713452580692963748763166981047023704528272230392479728897831538235554137129584665886878574314566549330671483636900134584707867654841021494106881794644469229030140144595938886437242375435914268001721437309283611088568191856208951867342004280893021653793820874747638264412653721
#c= 6566517934961780069851397787369134601399136324586682773286046135297104713708615112015588908759927424841719937322574766875308296258325687730658550956691921018605724308665345526807393669538103819281108643141723589363068859617542807984954436567078438099854340705208503317269397632214274507740533638883597409138972287275965697689862321166613821995226000320597560745749780942467497435742492468670016480112957715214640939272457886646483560443432985954141177463448896521810457886108311082101521263110578485768091003174683555938678346359150123350656418123918738868598042533211541966786594006129134087145798672161268647536724
#a= 22184346235325197613876257964606959796734210361241668065837491428527234174610482874427139453643569493268653377061231169173874401139203757698022691973395609028489121048788465356158531144787135876251872262389742175830840373281181905217510352227396545981674450409488394636498629147806808635157820030290630290808150235068140864601098322473572121965126109735529553247807211711005936042322910065304489093415276688746634951081501428768318098925390576594162098506572668709475140964400043947851427774550253257759990959997691631511262768785787474750441024242552456956598974533625095249106992723798354594261566983135394923063605
简单分析:
a=pow(P,3,n)
我们不知道P,但知道a,P^3modn=a,低加密指数攻击,但这里对a直接开3次方得到并不是正确的P,为什么呢?
关于低加密指数攻击的原理,有必要再了解了
对于的时候,,所以对c开方就可以得到m
而对于时,,我们需要对k进行爆破,只要满足kn+c能够开e次方就可以得到m
这里刚好是第二种情况,得到P之后,我们需要还原p,因为340<n^(1/e),运用coppersmith算法,就可以了
P=p>>340
#sagemath
n= 24479907029118467064460793139240403258697681144532146836881997837526487637306591893357774423547391867013441147680031968367449693796015901951120514250935018725570026327610524687128709707340727799633444550317834481416507364804274266363478822257132586592232042108076935945436358397787891169163821061005102693505011197453089873909085170776511350713452580692963748763166981047023704528272230392479728897831538235554137129584665886878574314566549330671483636900134584707867654841021494106881794644469229030140144595938886437242375435914268001721437309283611088568191856208951867342004280893021653793820874747638264412653721
c= 6566517934961780069851397787369134601399136324586682773286046135297104713708615112015588908759927424841719937322574766875308296258325687730658550956691921018605724308665345526807393669538103819281108643141723589363068859617542807984954436567078438099854340705208503317269397632214274507740533638883597409138972287275965697689862321166613821995226000320597560745749780942467497435742492468670016480112957715214640939272457886646483560443432985954141177463448896521810457886108311082101521263110578485768091003174683555938678346359150123350656418123918738868598042533211541966786594006129134087145798672161268647536724
a= 22184346235325197613876257964606959796734210361241668065837491428527234174610482874427139453643569493268653377061231169173874401139203757698022691973395609028489121048788465356158531144787135876251872262389742175830840373281181905217510352227396545981674450409488394636498629147806808635157820030290630290808150235068140864601098322473572121965126109735529553247807211711005936042322910065304489093415276688746634951081501428768318098925390576594162098506572668709475140964400043947851427774550253257759990959997691631511262768785787474750441024242552456956598974533625095249106992723798354594261566983135394923063605P= 66302204855869216148926460265779698576660998574555407124043768605865908069722142097621926304390549253688814246272903647124801382742681337653915017783954290069842646020090511605930590064443141710086879668946
P=P<<340
PR.<x>=PolynomialRing(Zmod(n))
f=x+Pp0=f.small_roots(X=2^340,beta=0.4)[0]
print('p=',P+p0)
import gmpy2
from Crypto.Util.number import *
# m=bytes_to_long(b'XXXX')
e=65537
# p=getPrime(1024)
# q=getPrime(1024)
# n=p*q
# print(p)
# c=pow(m,e,n)
# P=p>>340
# print(P)
# a=pow(P,3,n)
# print("n=",n)
# print("c=",c)
# print("a=",a)
n= 24479907029118467064460793139240403258697681144532146836881997837526487637306591893357774423547391867013441147680031968367449693796015901951120514250935018725570026327610524687128709707340727799633444550317834481416507364804274266363478822257132586592232042108076935945436358397787891169163821061005102693505011197453089873909085170776511350713452580692963748763166981047023704528272230392479728897831538235554137129584665886878574314566549330671483636900134584707867654841021494106881794644469229030140144595938886437242375435914268001721437309283611088568191856208951867342004280893021653793820874747638264412653721
c= 6566517934961780069851397787369134601399136324586682773286046135297104713708615112015588908759927424841719937322574766875308296258325687730658550956691921018605724308665345526807393669538103819281108643141723589363068859617542807984954436567078438099854340705208503317269397632214274507740533638883597409138972287275965697689862321166613821995226000320597560745749780942467497435742492468670016480112957715214640939272457886646483560443432985954141177463448896521810457886108311082101521263110578485768091003174683555938678346359150123350656418123918738868598042533211541966786594006129134087145798672161268647536724
a= 22184346235325197613876257964606959796734210361241668065837491428527234174610482874427139453643569493268653377061231169173874401139203757698022691973395609028489121048788465356158531144787135876251872262389742175830840373281181905217510352227396545981674450409488394636498629147806808635157820030290630290808150235068140864601098322473572121965126109735529553247807211711005936042322910065304489093415276688746634951081501428768318098925390576594162098506572668709475140964400043947851427774550253257759990959997691631511262768785787474750441024242552456956598974533625095249106992723798354594261566983135394923063605
import gmpy2
import libnum
# print(gmpy2.iroot(c,3)[0])
# def de(c, e, n):
# k = 0
# while True:
# mm = c + n*k
# result, flag = gmpy2.iroot(mm, e)
# if True == flag:
# return result
# k += 1
# print(k)
# e= 3
#
# m=de(c,e,n)
# print(m)
p= 148500014720728755901835170447203030242113125689825190413979909224639701026120883281188694701625473553602289432755479244507504340127322979884849883842306663453018960250560834067472479033116264539127330613635903666209920113813160301513820286874124210921593865507657148933555053341577090100101684021531775022459
q=n//p
print(q)
phi=(p-1)*(q-1)
e=65537
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
print(long_to_bytes(m))
#b'LitCTF{Y0U_hAV3_g0T_Th3_r1ghT_AnsW3r}'