【iOS ARKit】人形遮挡

人形遮挡简介

       在 AR系统中,计算机通过对设备摄像头采集的图像进行视觉处理和组织,建立起实景空间,然后将生成的虚拟对象依据几何一致性原理嵌入到实景空间中,形成虚实融合的增强现实环境,再输出到显示系统中呈现给使用者。

      正确实现虚拟物体与真实环境的遮挡关系,需要基于对真实环境3D结构的了解,感知真实世界的3D结构、重建真实世界的数字3D模型,然后基于深度信息实现正确的遮挡。但真实世界是一个非常复杂的3D 环境,精确快速地感知周围环境,建立一个足够好的真实世界3D模型非常困难,特别是在不使用其他传感器的情况下(如结构光、TOF、双目、激光等)。

      随着移动设备处理性能的提高、新型传感设备的发明、新型处理方式的出现,虚实遮挡融合的问题也在逐步得到改善。在 ARKit3 中,苹果公司通过神经网络引入了人形遮挡功能,通过对真实场景中人体的精确检测识别,实现虚拟物体与人体的正确遮挡,虚拟物体可以被人体所遮挡,提升了 AR使用体验。

人形遮挡原理

       遮挡问题在计算机图形学中其实就是深度排序问题。在AR初始化成功后,场景中所有的虚拟物体都有一个相对于 AR 世界坐标系的坐标,包括虚拟摄像机与虚拟物体,因此,图形渲染管线通过深度缓冲区(Depth Buffer)可以正确地渲染虚拟物体之间的遮挡关系。但是,从摄像机输人的真实世界图像数据并不包含深度信息,无法与虚拟物体进行深度对比。

      为解决人形遮挡问题,ARKit 借助于神经网络技术将人体从背景中分离出来,并将分离出来的人体图像保存到新增加的人体分隔缓冲区(Segmentation Buffer)中,人体分隔缓冲区是一个像素级缓冲区,可以精确地将人体与环境区分开来,因此,通过人体分隔缓冲区,可以得到精确的人形图像数据。但仅仅将人体从环境中分离出来还不够,还是没有人体的深度信息,为此,ARKit 又新增一个深度估计缓冲区(EstimatedDepth Data Buffer),这个缓冲区用于存储人体的深度信息,但这些深度信息从何而来呢?借助A12及以上仿生处理器的强大性能及神经网络技术,ARKit 工程师们设计了一个只从输人的 RGB 图像估算人体深度信息的算法,这个深度信息每帧都进行更新。至此,通过 ARKit 既可以从人体分隔缓冲区得到人体区域信息,也可以通过深度估计缓冲区得到人体深度信息,图形渲染管线就可以正确地实现虚拟物体与人体的遮挡。

人形遮挡实现

     人形遮挡的实现技术非常复杂,对计算资源要求也非常高,但在 ARKit 中使用该技术实现人形遮挡却非常简单。在 AR 应用中使用人形遮挡需要使用 ARWorld TrackingConfiguration 配置类,并设置其 frameSemantics值为 personSegmentation 或者 personSegmentation WithDepth 之—。当使用 personSegmentation 时,ARKit 不会估算检测到人形的深度信息,人形会无条件遮挡虚拟元素而不管虚拟元素远近。当使用 personSegmentation WithDepth 时,ARKit 在检测到人体时,不仅会分离出人形,还会计算人体到摄像机的距离,从而实现正确的人形遮挡。需要注意的是,只有A13及以上处理器才支持人形遮挡功能,因此在使用前需要先检查设备是否支持。人形遮挡的基本使用方法代码如下所示。

//
//  HumanOcclusion.swift
//  ARKitDeamo
//
//  Created by zhaoquan du on 2024/2/4.
//import SwiftUI
import ARKit
import RealityKit
import Combine//HumanExtraction
struct HumanOcclusionView: View {var body: some View {HumanOcclusionContainer().edgesIgnoringSafeArea(.all).navigationTitle("人形遮挡")}
}struct HumanOcclusionContainer: UIViewRepresentable {func makeUIView(context: Context) -> ARView {let arView = ARView(frame: .zero)guard ARWorldTrackingConfiguration.supportsFrameSemantics(.personSegmentationWithDepth) else {print("不支持人形遮挡")return arView}let config = ARWorldTrackingConfiguration()config.frameSemantics = .personSegmentationWithDepthconfig.planeDetection = .horizontalloadModel(arView: arView)arView.session.run(config)return arView}func updateUIView(_ uiView: ARView, context: Context) {}func loadModel(arView: ARView){var cancelable : AnyCancellable?cancelable = Entity.loadAsync(named: "fender_stratocaster.usdz").sink(receiveCompletion: { completion inif case let .failure(error) = completion {print("无法加载模型,错误:\(error.localizedDescription)")}cancelable?.cancel()}, receiveValue: { entity inlet planAnchor = AnchorEntity(plane: .horizontal)planAnchor.addChild(entity)arView.scene.addAnchor(planAnchor)cancelable?.cancel()})}}

      编译运行,在检测到的平面上放置虚拟物体,当人从虚拟物体前面或后面经过时会出现正确的虚实遮挡,AR虚拟物体不会再漂浮于环境之上,可信度大幅提升。

               

     ARKit 对完整人形检测遮挡效果表现很好,除此之外,对人体局部肢体,如手、脚也有比较好的检测识别和遮挡效果,如图所示。从图中可以看到,ARKit 对人形的区分还是比较精确的,当然,由于深度信息是由神经网络估计得出,而非真实的深度值,所以也会出现深度信息不准确、边缘区分不清晰的问题。

  具体代码地址:GitHub - duzhaoquan/ARkitDemo

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/456955.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信支付服务商,商户快速进件,减少工作量

大家好,我是小悟 服务商拓展特约商户,人工录入大量商户资料,耗时耗力。商户对标准费率不满意,无法说服商户先签约再帮其调整费率。 为了减少服务商工作量,服务商快速进件工具来了,分为移动端和管理端。用好…

Matplotlib热力图的创意绘制指南【第54篇—python:Matplotlib热力图】

文章目录 Matplotlib热力图的创意绘制指南1. 简介2. 基本热力图3. 自定义颜色映射4. 添加注释5. 不同形状的热力图6. 分块热力图7. 多子图热力图8. 3D热力图9. 高级颜色映射与颜色栏设置10. 热力图的动态展示11. 热力图的交互性12. 标准化数据范围13. 导出热力图 总结&#xff…

确定问卷调查样本量

目录 1. 问卷数据类型1.1 定性数据&定性分析1.2 定量数据&定量分析 2. 确定初始样本容量:2.1 公式:2.2 Z值2.3 p2.4 e2.5 举例 3.调整初始样本容量:3.1 公式:3.2 结论就是 小结: 1. 问卷数据类型…

收藏:相当大赞的来自 Agilean产品团队的2篇关于重塑敏捷组织的绩效管理的文章

Agilean产品团队,是吴穹博士领导下最近在国内敏捷界很厉害的产品,今天看到两篇相当不错的说敏捷组织的上下篇文章,分享下,地址是:6个原则15项举措,重塑敏捷组织的绩效管理(上) 6个原…

【亿级数据专题】「高并发架构」盘点本年度探索对外服务的百万请求量的高可靠消息服务设计实现

盘点本年度探索对外服务的百万请求量的高可靠消息服务设计实现 前提回顾消息服务逻辑架构运作流程消息路由系统数据存储系统BitCask结构异地存储容灾 推送系统数据消费模式推、拉模式的切换 实现低延时推送快速确认消息三层存储结构HeapMemoryDirectMemory 总结和展望 前提回顾…

常用加密算法

取盐校验 (不可逆) md5 md2 md4 带密码的md5(hmac) sha1 sha256 sha512 对称加密(可还原) AES DES 3DES 非对称加密(可还原) RSA(私钥 公钥) 同一个明文可…

生成树技术华为ICT网络赛道

9.生成树 目录 9.生成树 9.1.生成树技术概述 9.2.STP的基本概念及工作原理 9.3.STP的基础配置 9.4.RSTP对STP的改进 9.5.生成树技术进阶 9.1.生成树技术概述 技术背景:二层交换机网络的冗余性与环路 典型问题1:广播风暴 典型问题2:MA…

第8节、双电机多段直线运动【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】,查看本系列全部文章 摘要:前面章节主要介绍了bresenham直线插值运动,本节内容介绍让两个电机完成连续的直线运动,目标是画一个正五角星 一、五角星图介绍 五角星总共10条直线,10个顶点。设定左下角为原点…

【力扣】两数相加,模拟+递归

两数相加原题地址 方法一:模拟 注意到链表的方向是从低位到高位,而做“竖式相加”也是低位到高位。 1 2 3 4 5 ----------- 1 6 8 所以可以用同样的方法来模拟。如果不考虑进位,只需要取出对应位的2个数相加,再尾插到新的…

微信小程序学习指南:从基础知识到代码展示

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

Visual Studio 2010+C#实现信源和信息熵

1. 设计要求 以图形界面的方式设计一套程序,该程序可以实现以下功能: 从输入框输入单个或多个概率,然后使用者可以通过相关按钮的点击求解相应的对数,自信息以及信息熵程序要能够实现马尔可夫信源转移概率矩阵的输入并且可以计算…

《Git 简易速速上手小册》第4章:Git 与团队合作(2024 最新版)

文章目录 4.1 协作流程简介4.1.1 基础知识讲解4.1.2 重点案例:为 Python Web 应用添加新功能4.1.3 拓展案例 1:使用 CI/CD 流程自动化测试4.1.4 拓展案例 2:处理 Pull Request 中的反馈 4.2 使用 Pull Requests4.2.1 基础知识讲解4.2.2 重点案…