并发容器(Map、List、Set)实战及其原理

目录

JUC包下的并发容器

CopyOnWriteArrayList 

应用场景

CopyOnWriteArrayList使用

CopyOnWriteArrayList原理 

CopyOnWriteArrayList 的缺陷 

扩展知识:迭代器的 fail-fast 与 fail-safe 机制 

ConcurrentHashMap 

应用场景 

ConcurrentHashMap使用

数据结构 

ConcurrentSkipListMap 

跳表 

ConcurrentSkipListMap使用 

电商场景中并发容器的选择 

案例一:电商网站中记录一次活动下各个商品售卖的数量。

案例二:在一次活动下,为每个用户记录浏览商品的历史和次数。

案例三:在活动中,创建一个用户列表,记录冻结的用户。一旦冻结,不允许再下单抢购,但是可以浏览。


JUC包下的并发容器

        Java的集合容器框架中,主要有四大类别:List、Set、Queue、Map,大家熟知的这些集合类ArrayList、LinkedList、HashMap这些容器都是非线程安全的。

        所以,Java先提供了同步容器供用户使用。同步容器可以简单地理解为通过synchronized来实现同步的容器,比如Vector、Hashtable以及SynchronizedList等容器。这样做的代价是削弱了并发性,当多个线程共同竞争容器级的锁时,吞吐量就会降低。

        因此为了解决同步容器的性能问题,所以才有了并发容器。java.util.concurrent包中提供了多种并发类容器:

CopyOnWriteArrayList

对应的非并发容器:ArrayList

目标:代替Vector、synchronizedList

原理:利用高并发往往是读多写少的特性,对读操作不加锁,对写操作,先复制一份新的集合,在新的集合上面修改,然后将新集合赋值给旧的引用,并通过volatile 保证其可见性,当然写操作的锁是必不可少的了。

CopyOnWriteArraySet

对应的非并发容器:HashSet

目标:代替synchronizedSet

原理:基于CopyOnWriteArrayList实现,其唯一的不同是在add时调用的是CopyOnWriteArrayList的addIfAbsent方法,其遍历当前Object数组,如Object数组中已有了当前元素,则直接返回,如果没有则放入Object数组的尾部,并返回。

ConcurrentHashMap

对应的非并发容器:HashMap

目标:代替Hashtable、synchronizedMap,支持复合操作

原理:JDK6中采用一种更加细粒度的加锁机制Segment“分段锁”,JDK8中采用CAS无锁算法。

ConcurrentSkipListMap

对应的非并发容器:TreeMap

目标:代替synchronizedSortedMap(TreeMap)

原理:Skip list(跳表)是一种可以代替平衡树的数据结构,默认是按照Key值升序的。

CopyOnWriteArrayList 

        CopyOnWriteArrayList 是 Java 中的一种线程安全的 List,它是一个可变的数组,支持并发读和写。与普通的 ArrayList 不同,它的读取操作不需要加锁,因此具有很高的并发性能。 

应用场景

CopyOnWriteArrayList 的应用场景主要有两个方面:

  • 读多写少的场景

        由于 CopyOnWriteArrayList 的读操作不需要加锁,因此它非常适合在读多写少的场景中使用。例如,一个读取频率比写入频率高得多的缓存,使用 CopyOnWriteArrayList 可以提高读取性能,并减少锁竞争的开销。

  • 不需要实时更新的数据

        由于 CopyOnWriteArrayList 读取的数据可能不是最新的,因此它适合于不需要实时更新的数据。例如,在日志应用中,为了保证应用的性能,日志记录的操作可能被缓冲,并不是实时写入文件系统,而是在某个时刻批量写入。这种情况下,使用 CopyOnWriteArrayList 可以避免多个线程之间的竞争,提高应用的性能。

CopyOnWriteArrayList使用

基本使用

        和 ArrayList 在使用方式方面很类似。

// 创建一个 CopyOnWriteArrayList 对象
CopyOnWriteArrayList copyOnWriteArrayList= new CopyOnWriteArrayList();
// 新增
copyOnWriteArrayList.add(1);
// 设置(指定下标)
copyOnWriteArrayList.set(0, 2);
// 获取(查询)
copyOnWriteArrayList.get(0);
// 删除
copyOnWriteArrayList.remove(0);
// 清空
copyOnWriteArrayList.clear();
// 是否为空
copyOnWriteArrayList.isEmpty();
// 是否包含
copyOnWriteArrayList.contains(1);
// 获取元素个数
copyOnWriteArrayList.size();

IP 黑名单判定

        当应用接入外部请求后,为了防范风险,一般会对请求做一些特征判定,如对请求 IP 是否合法的判定就是一种。IP 黑名单偶尔会被系统运维人员做更新。

public class CopyOnWriteArrayListDemo {private static CopyOnWriteArrayList<String> copyOnWriteArrayList = new CopyOnWriteArrayList<>();// 模拟初始化的黑名单数据static {copyOnWriteArrayList.add("ipAddr0");copyOnWriteArrayList.add("ipAddr1");copyOnWriteArrayList.add("ipAddr2");}public static void main(String[] args) throws InterruptedException {Runnable task = new Runnable() {public void run() {// 模拟接入用时try {Thread.sleep(new Random().nextInt(5000));} catch (Exception e) {}String currentIP = "ipAddr" + new Random().nextInt(6);if (copyOnWriteArrayList.contains(currentIP)) {System.out.println(Thread.currentThread().getName() + " IP " + currentIP + "命中黑名单,拒绝接入处理");return;}System.out.println(Thread.currentThread().getName() + " IP " + currentIP + "接入处理...");}};new Thread(task, "请求1").start();new Thread(task, "请求2").start();new Thread(task, "请求3").start();new Thread(new Runnable() {public void run() {// 模拟用时try {Thread.sleep(new Random().nextInt(2000));} catch (Exception e) {}String newBlackIP = "ipAddr3";copyOnWriteArrayList.add(newBlackIP);System.out.println(Thread.currentThread().getName() + " 添加了新的非法IP " + newBlackIP);}}, "IP黑名单更新").start();Thread.sleep(1000000);}
}

 

CopyOnWriteArrayList原理 

        CopyOnWriteArrayList 内部使用了一种称为“写时复制”的机制。当需要进行写操作时,它会创建一个新的数组,并将原始数组的内容复制到新数组中,然后进行写操作。因此,读操作不会被写操作阻塞,读操作返回的结果可能不是最新的,但是对于许多应用场景来说,这是可以接受的。此外,由于读操作不需要加锁,因此它可以支持更高的并发度。 

CopyOnWriteArrayList 的缺陷 

CopyOnWriteArrayList 有几个缺点:

  • 由于写操作的时候,需要拷贝数组,会消耗内存,如果原数组的内容比较多的情况下,可能导致 young gc 或者 full gc
  • 不能用于实时读的场景,像拷贝数组、新增元素都需要时间,所以调用一个 set 操作后,读取到数据可能还是旧的,虽然 CopyOnWriteArrayList 能做到最终一致性,但是还是没法满足实时性要求;
  • CopyOnWriteArrayList 合适读多写少的场景,不过这类慎用。因为谁也没法保证 CopyOnWriteArrayList 到底要放置多少数据,万一数据稍微有点多,每次 add/set 都要重新复制数组,这个代价实在太高昂了。在高性能的互联网应用中,这种操作分分钟引起故障。

扩展知识:迭代器的 fail-fast 与 fail-safe 机制 

        在 Java 中,迭代器(Iterator)在迭代的过程中,如果底层的集合被修改(添加或删除元素),不同的迭代器对此的表现行为是不一样的,可分为两类:Fail-Fast(快速失败)和 Fail-Safe(安全失败)。

fail-fast 机制

        fail-fast 机制是java集合(Collection)中的一种错误机制。当多个线程对同一个集合的内容进行操作时,就可能会产生 fail-fast 事件。例如:当某一个线程A通过 iterator 去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A访问集合时,就会抛出ConcurrentModificationException异常,产生 fail-fast 事件。在 java.util 包中的集合,如 ArrayList、HashMap 等,它们的迭代器默认都是采用 Fail-Fast 机制。

fail-fast解决方案

  • 方案一:在遍历过程中所有涉及到改变modCount 值的地方全部加上synchronized 或者直接使用 Collection#synchronizedList,这样就可以解决问题,但是不推荐,因为增删造成的同步锁可能会阻塞遍历操作。
  • 方案二:使用CopyOnWriteArrayList 替换 ArrayList,推荐使用该方案(即fail-safe)。

fail-safe机制

        任何对集合结构的修改都会在一个复制的集合上进行,因此不会抛出ConcurrentModificationException。在 java.util.concurrent 包中的集合,如 CopyOnWriteArrayList、ConcurrentHashMap 等,它们的迭代器一般都是采用 Fail-Safe 机制。

缺点:

  • 采用 Fail-Safe 机制的集合类都是线程安全的,但是它们无法保证数据的实时一致性,它们只能保证数据的最终一致性。在迭代过程中,如果集合被修改了,可能读取到的仍然是旧的数据。
  • Fail-Safe 机制还存在另外一个问题,就是内存占用。由于这类集合一般都是通过复制来实现读写分离的,因此它们会创建出更多的对象,导致占用更多的内存,甚至可能引起频繁的垃圾回收,严重影响性能。

ConcurrentHashMap 

        ConcurrentHashMap是Java中线程安全的哈希表,它支持高并发且能够同时进行读写操作。

        在JDK1.8之前,ConcurrentHashMap使用分段锁以在保证线程安全的同时获得更大的效率。JDK1.8开始舍弃了分段锁,使用自旋+CAS+synchronized关键字来实现同步。官方的解释中:一是节省内存空间 ,二是分段锁需要更多的内存空间,而大多数情况下,并发粒度达不到设置的粒度,竞争概率较小,反而导致更新的长时间等待(因为锁定一段后整个段就无法更新了)三是提高GC效率。

应用场景 

ConcurrentHashMap 的应用场景包括但不限于以下几种:

  • 共享数据的线程安全:在多线程编程中,如果需要进行共享数据的读写,可以使用 ConcurrentHashMap 保证线程安全。
  • 缓存:ConcurrentHashMap 的高并发性能和线程安全能力,使其成为一种很好的缓存实现方案。在多线程环境下,使用 ConcurrentHashMap 作为缓存的数据结构,能够提高程序的并发性能,同时保证数据的一致性。

ConcurrentHashMap使用

基本用法 

// 创建一个 ConcurrentHashMap 对象
ConcurrentHashMap<Object, Object> concurrentHashMap = new ConcurrentHashMap<>();
// 添加键值对
concurrentHashMap.put("key", "value");
// 添加一批键值对
concurrentHashMap.putAll(new HashMap());
// 使用指定的键获取值
concurrentHashMap.get("key");
// 判定是否为空
concurrentHashMap.isEmpty();
// 获取已经添加的键值对个数
concurrentHashMap.size();
// 获取已经添加的所有键的集合
concurrentHashMap.keys();
// 获取已经添加的所有值的集合
concurrentHashMap.values();
// 清空
concurrentHashMap.clear();

其他方法:

  • V putIfAbsent(K key, V value)

        如果 key 对应的 value 不存在,则 put 进去,返回 null。否则不 put,返回已存在的 value。

  • boolean remove(Object key, Object value)

        如果 key 对应的值是 value,则移除 K-V,返回 true。否则不移除,返回 false。

  • boolean replace(K key, V oldValue, V newValue)

        如果 key 对应的当前值是 oldValue,则替换为 newValue,返回 true。否则不替换,返回 false。

统计文件中英文字母出现的总次数 

public class ConcurrentHashMapDemo {private static ConcurrentHashMap<String, AtomicLong> concurrentHashMap = new ConcurrentHashMap<>();// 创建一个 CountDownLatch 对象用于统计线程控制private static CountDownLatch countDownLatch = new CountDownLatch(3);// 模拟文本文件中的单词private static String[] words = {"we", "it", "is"};public static void main(String[] args) throws InterruptedException {Runnable task = new Runnable() {public void run() {for(int i=0; i<3; i++) {// 模拟从文本文件中读取到的单词String word = words[new Random().nextInt(3)];// 尝试获取全局统计结果AtomicLong number = concurrentHashMap.get(word);// 在未获取到的情况下,进行初次统计结果设置if (number == null) {// 在设置时发现如果不存在则初始化AtomicLong newNumber = new AtomicLong(0);number = concurrentHashMap.putIfAbsent(word, newNumber);if (number == null) {number = newNumber;}}// 在获取到的情况下,统计次数直接加1number.incrementAndGet();System.out.println(Thread.currentThread().getName() + ":" + word + " 出现" + number + " 次");}countDownLatch.countDown();}};new Thread(task, "线程1").start();new Thread(task, "线程2").start();new Thread(task, "线程3").start();try {countDownLatch.await();System.out.println(concurrentHashMap.toString());} catch (Exception e) {}}
}

数据结构 

HashTable的数据结构

JDK1.7 中的ConcurrentHashMap 

        在jdk1.7及以下的版本中,结构是用Segments数组 + HashEntry数组 + 链表实现的(写分散) 

JDK1.8中的ConcurrentHashMap

        jdk1.8抛弃了Segments分段锁的方案,而是改用了和HashMap一样的结构操作,也就是数组 + 链表 + 红黑树结构,比jdk1.7中的ConcurrentHashMap提高了效率,在并发方面,使用了cas + synchronized的方式保证数据的一致性 

链表转化为红黑树需要满足2个条件:

  • 链表的节点数量大于等于树化阈值8
  • Node数组的长度大于等于最小树化容量值64
#树化阈值为8
static final int TREEIFY_THRESHOLD = 8;
#最小树化容量值为64
static final int MIN_TREEIFY_CAPACITY = 64;

ConcurrentSkipListMap 

        ConcurrentSkipListMap 是 Java 中的一种线程安全、基于跳表实现的有序映射(Map)数据结构。它是对 TreeMap 的并发实现,支持高并发读写操作。

        ConcurrentSkipListMap适用于需要高并发性能、支持有序性和区间查询的场景,能够有效地提高系统的性能和可扩展性。

跳表 

        跳表是一种基于有序链表的数据结构,支持快速插入、删除、查找操作,其时间复杂度为O(log n),比普通链表的O(n)更高效。

        数据结构操作链接:https://cmps-people.ok.ubc.ca/ylucet/DS/SkipList.html

图一

图二

图三

跳表的特性有这么几点:

  • 一个跳表结构由很多层数据结构组成。
  • 每一层都是一个有序的链表,默认是升序。也可以自定义排序方法。
  • 最底层链表(图中所示Level1)包含了所有的元素。
  • 如果每一个元素出现在LevelN的链表中(N>1),那么这个元素必定在下层链表出现。
  • 每一个节点都包含了两个指针,一个指向同一级链表中的下一个元素,一个指向下一层级别链表中的相同值元素。

跳表的查找

跳表的插入 

跳表插入数据的流程如下:

  1. 找到元素适合的插入层级K,这里的K采用随机的方式。若K大于跳表的总层级,那么开辟新的一层,否则在对应的层级插入。
  2. 申请新的节点。
  3. 调整对应的指针。

假设我要插入元素13,原有的层级是3级,假设K=4:

倘若K=2:

ConcurrentSkipListMap使用 

基本用法 

public class ConcurrentSkipListMapDemo {public static void main(String[] args) {ConcurrentSkipListMap<Integer, String> map = new ConcurrentSkipListMap<>();// 添加元素map.put(1, "a");map.put(3, "c");map.put(2, "b");map.put(4, "d");// 获取元素String value1 = map.get(2);System.out.println(value1); // 输出:b// 遍历元素for (Integer key : map.keySet()) {String value = map.get(key);System.out.println(key + " : " + value);}// 删除元素String value2 = map.remove(3);System.out.println(value2); // 输出:c}
}

电商场景中并发容器的选择 

案例一:电商网站中记录一次活动下各个商品售卖的数量。

场景分析:需要频繁按商品id做get和set,但是商品id(key)的数量相对稳定不会频繁增删

初级方案:选用HashMap,key为商品id,value为商品购买的次数。每次下单取出次数,增加后再写入

问题:HashMap线程不安全!在多次商品id写入后,如果发生扩容,在JDK1.7 之前,在并发场景下HashMap 会出现死循环,从而导致CPU 使用率居高不下。JDK1.8 中修复了HashMap 扩容导致的死循环问题,但在高并发场景下,依然会有数据丢失以及不准确的情况出现。

选型:Hashtable 不推荐,锁太重,选ConcurrentHashMap 确保高并发下多线程的安全性

案例二:在一次活动下,为每个用户记录浏览商品的历史和次数。

场景分析:每个用户各自浏览的商品量级非常大,并且每次访问都要更新次数,频繁读写

初级方案:为确保线程安全,采用上面的思路,ConcurrentHashMap

问题:ConcurrentHashMap 内部机制在数据量大时,会把链表转换为红黑树。而红黑树在高并发情况下,删除和插入过程中有个平衡的过程,会牵涉到大量节点,因此竞争锁资源的代价相对比较高

选型:用跳表,ConcurrentSkipListMap将key值分层,逐个切段,增删效率高于ConcurrentHashMap

结论:如果对数据有强一致要求,则需使用Hashtable;在大部分场景通常都是弱一致性的情况下,使用ConcurrentHashMap 即可;如果数据量级很高,且存在大量增删改操作,则可以考虑使用ConcurrentSkipListMap。

案例三:在活动中,创建一个用户列表,记录冻结的用户。一旦冻结,不允许再下单抢购,但是可以浏览。

场景分析:违规被冻结的用户不会太多,但是绝大多数非冻结用户每次抢单都要去查一下这个列表。低频写,高频读。

初级方案:ArrayList记录要冻结的用户id

问题:ArrayList对冻结用户id的插入和读取操作在高并发时,线程不安全。Vector可以做到线程安全,但并发性能差,锁太重。

选型:综合业务场景,选CopyOnWriteArrayList,会占空间,但是也仅仅发生在添加新冻结用户的时候。绝大多数的访问在非冻结用户的读取和比对上,不会阻塞。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/459046.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IT行业针对大数据的安全文件传输的重要性

在数字化浪潮的推动下&#xff0c;数据已成为现代社会的宝贵资源。特别是大数据&#xff0c;以其海量、多样化、高速增长和低价值密度的特性&#xff0c;对信息技术&#xff08;IT&#xff09;行业产生了深远影响。大数据的应用不仅推动了云计算、物联网和人工智能等领域的发展…

算法——前缀和算法

1. 什么是前缀和算法 前缀和算法&#xff08;Prefix Sum&#xff09;是一种用于快速计算数组元素之和的技术。它通过预先计算数组中每个位置前所有元素的累加和&#xff0c;将这些部分和存储在一个新的数组中&#xff0c;从而在需要计算某个区间的和时&#xff0c;可以通过简单…

Backtrader 文档学习- Sizers

Backtrader 文档学习- Sizers 1.概述 智能仓位 Strategy提供了交易方法&#xff0c;即&#xff1a;buy&#xff0c;sell和close。看一下buy的定义&#xff1a; def buy(self, dataNone,sizeNone, priceNone, plimitNone,exectypeNone, validNone, tradeid0, **kwargs):注意&…

SpringBoot整合Knife4j接口文档生成工具

一个好的项目&#xff0c;接口文档是非常重要的&#xff0c;除了能帮助前端和后端开发人员更快地协作完成开发任务&#xff0c;接口文档还能用来生成资源权限&#xff0c;对权限访问控制的实现有很大的帮助。 这篇文章介绍一下企业中常用的接口文档工具Knife4j&#xff08;基于…

每日一题——LeetCode1389.按既定顺序创建目标数组

方法一 splice 使用splice函数就可以在数组的指定索引位置添加元素 var createTargetArray function(nums, index) {let res[]for(let i0;i<nums.length;i){res.splice(index[i],0,nums[i])}return res }; 消耗时间和内存情况&#xff1a; 方法二 模拟 如果res[index[…

阅读《极客时间 | Kafka核心技术与实战》(一)【Kafka入门】

阅读《极客时间 | Kafka核心技术与实战》 为什么要学习Kafka消息引擎系统ABC一篇文章带你快速搞定Kafka术语我应该选择哪种Kafka&#xff1f;聊聊Kafka的版本号 为什么要学习Kafka 如果你是一名软件开发工程师的话&#xff0c;掌握 Kafka 的第一步就是要根据你掌握的编程语言去…

解析spritf和sscanf与模拟常用字符串函数strchr,strtok(二)

今天又来继续我们的字符串函数的文章&#xff0c;这也是最后一篇了。希望这两篇文章能让各位理解透字符串函数。 目录 strchr strtok sprintf和sscanf strchr strchr 是一个用于在字符串中查找特定字符首次出现位置的函数。以下是解析和模拟实现 strchr 函数的示例&…

hr最讨厌这6种应届生简历❌

用求职方法&#xff0c;让你变成offer收割机&#xff0c;是我的责任❗ 简历写得好&#xff0c;面试少不了。最近很多应届生找龙猫帮看简历&#xff0c;我发现很多应届生是真不会写简历啊。 有的简历排版花里胡哨&#xff0c;有的自我评价千篇一律&#xff0c;有的实习经历太过…

SpringBoot:web开发

web开发demo&#xff1a;点击查看 LearnSpringBoot05Web 点击查看更多的SpringBoot教程 技术摘要 webjarsBootstrap模板引擎thymeleaf嵌入式Servlet容器注册web三大组件 一、webjars webjars官网 简介 简介翻译 WebJars 是打包到 JAR&#xff08;Java Archive&#xff09;…

【网站项目】032汽车客运站管理系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

第十个知识点:继承

在ES6之后&#xff0c;javascript引入了类的概念&#xff0c;也就是说与java相同&#xff0c;我们可以在js文件中创建类与对象&#xff0c;然后通过extend继承 <script>class Father {constructor(name) {//父类构造器this.name name;}speak(){//父类方法console.log(我…

H2和流行关系型数据库对比

1.H2和SQLite数据库对比 1.1.独特的特点和用途 H2 和 SQLite 是两个流行的轻量级数据库&#xff0c;它们各自有一些独特的特点和用途&#xff1a; H2 数据库: 主要用于 Java 应用&#xff0c;因为它是用 Java 编写的。支持内存模式和磁盘持久化。提供了一个基于浏览器的控制台…