如何判断线程池已经执行完所有任务了?

目录

不判断的问题

方法1:isTerminated

缺点分析

扩展:线程池的所有状态

方法2:getCompletedTaskCount

方法说明

优缺点分析

方法3:CountDownLatch(推荐)

优缺点分析

方法4:CyclicBarrier

方法说明

优缺点分析

总结


很多场景下,我们需要等待线程池的所有任务都执行完,然后再进行下一步操作。对于线程 Thread 来说,很好实现,加一个 join 方法(主线程”等待“子线程”结束之后才能继续运行)就解决了,然而对于线程池的判断就比较麻烦了。

我们本文提供 4 种判断线程池任务是否执行完的方法:

  1. 使用 isTerminated 方法判断。
  2. 使用 getCompletedTaskCount 方法判断。
  3. 使用 CountDownLatch 判断。
  4. 使用 CyclicBarrier 判断。

接下来我们一个一个来看。

不判断的问题

如果不对线程池是否已经执行完做判断,就会出现以下问题,如下代码所示:

import java.util.Random;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;public class ThreadPoolCompleted {public static void main(String[] args) {// 创建线程池ThreadPoolExecutor threadPool = new ThreadPoolExecutor(10, 20,0, TimeUnit.SECONDS, new LinkedBlockingDeque<>(1024));// 添加任务addTask(threadPool);// 打印结果System.out.println("线程池任务执行完成!");}/*** 给线程池添加任务*/private static void addTask(ThreadPoolExecutor threadPool) {// 任务总数final int taskCount = 5;// 添加任务for (int i = 0; i < taskCount; i++) {final int finalI = i;threadPool.submit(new Runnable() {@Overridepublic void run() {try {// 随机休眠 0-4sint sleepTime = new Random().nextInt(5);TimeUnit.SECONDS.sleep(sleepTime);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(String.format("任务%d执行完成", finalI));}});}}
}

以上程序的执行结果如下:
 

从上述执行结果可以看出,程序先打印了“线程池任务执行完成!”,然后还在陆续的执行线程池的任务,这种执行顺序混乱的结果,并不是我们期望的结果。我们想要的结果是等所有任务都执行完之后,再打印“线程池任务执行完成!”的信息。

产生以上问题的原因是因为主线程 main和线程池是并发执行的,所以当线程池还没执行完,main 线程的打印结果代码就已经执行了。想要解决这个问题,就需要在打印结果之前,先判断线程池的任务是否已经全部执行完,如果没有执行完,就等待任务执行完再执行打印结果。

 

方法1:isTerminated

我们可以利用线程池的终止状态(TERMINATED)来判断线程池的任务是否已经全部执行完,但想要线程池的状态发生改变,我们就需要调用线程池的 shutdown 方法,不然线程池一直会处于 RUNNING 运行状态,那就没办法使用终止状态来判断任务是否已经全部执行完了,它的实现代码如下:

import java.util.Random;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;/*** 线程池任务执行完成判断*/
public class ThreadPoolCompleted {public static void main(String[] args) {// 1.创建线程池ThreadPoolExecutor threadPool = new ThreadPoolExecutor(10, 20,0, TimeUnit.SECONDS, new LinkedBlockingDeque<>(1024));// 2.添加任务addTask(threadPool);// 3.判断线程池是否执行完isCompleted(threadPool); // 【核心调用方法】// 4.线程池执行完System.out.println();System.out.println("线程池任务执行完成!");}/*** 方法1:isTerminated 实现方式* 判断线程池的所有任务是否执行完*/private static void isCompleted(ThreadPoolExecutor threadPool) {threadPool.shutdown();while (!threadPool.isTerminated()) { // 如果没有执行完就一直循环}}/*** 给线程池添加任务*/private static void addTask(ThreadPoolExecutor threadPool) {// 任务总数final int taskCount = 5;// 添加任务for (int i = 0; i < taskCount; i++) {final int finalI = i;threadPool.submit(new Runnable() {@Overridepublic void run() {try {// 随机休眠 0-4sint sleepTime = new Random().nextInt(5);TimeUnit.SECONDS.sleep(sleepTime);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(String.format("任务%d执行完成", finalI));}});}}
}

方法说明:shutdown 方法是启动线程池有序关闭的方法,它在完全关闭之前会执行完之前所有已经提交的任务,并且不会再接受任何新任务。当线程池中的所有任务都执行完之后,线程池就进入了终止状态,调用 isTerminated 方法返回的结果就是 true 了。

以上程序的执行结果如下:

缺点分析

需要关闭线程池。

扩展:线程池的所有状态

线程池总共包含以下 5 种状态:

  • RUNNING:运行状态。
  • SHUTDOWN:关闭状态。
  • STOP:阻断状态。
  • TIDYING:整理状态。
  • TERMINATED:终止状态

如果不调用线程池的关闭方法,那么线程池会一直处于 RUNNING 运行状态。

方法2:getCompletedTaskCount

我们可以通过判断线程池中的计划执行任务数和已完成任务数,来判断线程池是否已经全部执行完,如果计划执行任务数=已完成任务数,那么线程池的任务就全部执行完了,否则就未执行完,具体实现代码如下:

/*** 方法2:getCompletedTaskCount 实现方式* 判断线程池的所有任务是否执行完*/
private static void isCompletedByTaskCount(ThreadPoolExecutor threadPool) {while (threadPool.getTaskCount() != threadPool.getCompletedTaskCount()) {}
}

以上程序执行结果如下:

方法说明
  • getTaskCount():返回计划执行的任务总数。由于任务和线程的状态可能在计算过程中动态变化,因此返回的值只是一个近似值
  • getCompletedTaskCount():返回完成执行任务的总数。因为任务和线程的状态可能在计算过程中动态地改变,所以返回的值只是一个近似值,但是在连续的调用中并不会减少。
优缺点分析

此实现方法的优点是无需关闭线程池。
它的缺点是 getTaskCount() 和 getCompletedTaskCount() 返回的是一个近似值,因为线程池中的任务和线程的状态可能在计算过程中动态变化,所以它们两个返回的都是一个近似值。

方法3:CountDownLatch(推荐)

CountDownLatch 可以理解为一个计数器,我们创建了一个包含 N 个任务的计数器,每个任务执行完计数器 -1,直到计数器减为 0 时,说明所有的任务都执行完了,就可以执行下一段业务的代码了。

具体实现代码如下:

public static void main(String[] args) throws InterruptedException {// 创建线程池ThreadPoolExecutor threadPool = new ThreadPoolExecutor(10, 20,0, TimeUnit.SECONDS, new LinkedBlockingDeque<>(1024));final int taskCount = 5;    // 任务总数// 单次计数器CountDownLatch countDownLatch = new CountDownLatch(taskCount); // ①// 添加任务for (int i = 0; i < taskCount; i++) {final int finalI = i;threadPool.submit(new Runnable() {@Overridepublic void run() {try {// 随机休眠 0-4sint sleepTime = new Random().nextInt(5);TimeUnit.SECONDS.sleep(sleepTime);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(String.format("任务%d执行完成", finalI));// 线程执行完,计数器 -1countDownLatch.countDown();  // ②}});}// 阻塞等待线程池任务执行完countDownLatch.await();  // ③// 线程池执行完System.out.println();System.out.println("线程池任务执行完成!");
}

代码说明:以上代码中标识为 ①、②、③ 的代码行是核心实现代码,其中:
① 是声明一个包含了 5 个任务的计数器;
② 是每个任务执行完之后计数器 -1;
③ 是阻塞等待计数器 CountDownLatch 减为 0,表示任务都执行完了,可以执行 await 方法后面的业务代码了。

以上程序的执行结果如下:

优缺点分析

CountDownLatch 写法很优雅,且无需关闭线程池,但它的缺点是只能使用一次,CountDownLatch 创建之后不能被重复使用,也就是说 CountDownLatch 可以理解为只能使用一次的计数器。

方法4:CyclicBarrier

CyclicBarrier 和 CountDownLatch 类似,它可以理解为一个可以重复使用的循环计数器,CyclicBarrier 可以调用 reset 方法将自己重置到初始状态,CyclicBarrier 具体实现代码如下:

public static void main(String[] args) throws InterruptedException {// 创建线程池ThreadPoolExecutor threadPool = new ThreadPoolExecutor(10, 20,0, TimeUnit.SECONDS, new LinkedBlockingDeque<>(1024));final int taskCount = 5;    // 任务总数// 循环计数器 ①CyclicBarrier cyclicBarrier = new CyclicBarrier(taskCount, new Runnable() {@Overridepublic void run() {// 线程池执行完System.out.println();System.out.println("线程池所有任务已执行完!");}});// 添加任务for (int i = 0; i < taskCount; i++) {final int finalI = i;threadPool.submit(new Runnable() {@Overridepublic void run() {try {// 随机休眠 0-4sint sleepTime = new Random().nextInt(5);TimeUnit.SECONDS.sleep(sleepTime);System.out.println(String.format("任务%d执行完成", finalI));// 线程执行完cyclicBarrier.await(); // ②} catch (InterruptedException e) {e.printStackTrace();} catch (BrokenBarrierException e) {e.printStackTrace();}}});}
}

以上程序的执行结果如下:

方法说明

CyclicBarrier 有 3 个重要的方法:

  1. 构造方法:构造方法可以传递两个参数,参数 1 是计数器的数量 parties,参数 2 是计数器为 0 时,也就是任务都执行完之后可以执行的事件(方法)。
  2. await 方法:在 CyclicBarrier 上进行阻塞等待,当调用此方法时 CyclicBarrier 的内部计数器会 -1,直到发生以下情形之一:
    • 在 CyclicBarrier 上等待的线程数量达到 parties,也就是计数器的声明数量时,则所有线程被释放,继续执行。
    • 当前线程被中断,则抛出 InterruptedException 异常,并停止等待,继续执行。
    • 其他等待的线程被中断,则当前线程抛出 BrokenBarrierException 异常,并停止等待,继续执行。
    • 其他等待的线程超时,则当前线程抛出 BrokenBarrierException 异常,并停止等待,继续执行。
    • 其他线程调用 CyclicBarrier.reset() 方法,则当前线程抛出 BrokenBarrierException 异常,并停止等待,继续执行。
  3. reset 方法:使得CyclicBarrier回归初始状态,直观来看它做了两件事:
    1. 如果有正在等待的线程,则会抛出 BrokenBarrierException 异常,且这些线程停止等待,继续执行。
    2. 将是否破损标志位 broken 置为 false。
优缺点分析

CyclicBarrier 从设计的复杂度到使用的复杂度都高于 CountDownLatch,相比于 CountDownLatch 来说它的优点是可以重复使用(只需调用 reset 就能恢复到初始状态),缺点是使用难度较高。

 

总结

我们本文提供 4 种判断线程池任务是否执行完的方法:

  1. 使用 isTerminated 方法判断:通过判断线程池的完成状态来实现,需要关闭线程池,一般情况下不建议使用。
  2. 使用 getCompletedTaskCount 方法判断:通过计划执行总任务量和已经完成总任务量,来判断线程池的任务是否已经全部执行,如果相等则判定为全部执行完成。但因为线程个体和状态都会发生改变,所以得到的是一个大致的值,可能不准确。
  3. 使用 CountDownLatch 判断:相当于一个线程安全的单次计数器,使用比较简单,且不需要关闭线程池,是比较常用的判断方法
  4. 使用 CyclicBarrier 判断:相当于一个线程安全的重复计数器,但使用较为复杂,所以日常项目中使用的较少。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/460802.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第五篇【传奇开心果系列】vant开发移动应用示例:深度解读高度可定制

传奇开心果博文系列 系列博文目录Vant 开发移动应用示例系列 博文目录前言一、Vant高度可定制的重要作用二、样式定制介绍和示例代码三、组件定制介绍和示例代码四、组件库定制介绍和示例代码五、主题定制介绍和示例代码六、语言环境定制介绍和示例代码七、资源加载定制介绍和示…

电视盒子哪个牌子好?经销商整理线下热销电视盒子排名

买电视盒子的时候不懂电视盒子哪个牌子好的朋友超级多&#xff0c;近来我看到很多网友在讨论电视盒子&#xff0c;我按照店内的销量情况整理了热销电视盒子排名&#xff0c;跟着我一起看看目前实体店最受欢迎的电视盒子都有哪些吧。 NO.1 泰捷WEBOX WE40S电视盒子 推荐理由&am…

创新指南|生成式AI实验 - 企业快速渐进采用人工智能的科学新方法

生成式人工智能&#xff08;Gen AI&#xff09;正迅速成为各行各业的企业创新焦点。 生成式AI实验对于企业创新而言至关重要&#xff0c;不仅可以帮助企业识别最适合和最有影响的应用场景&#xff0c;还能促进组织沿着生成式 AI 学习曲线前进&#xff0c;建立早期的创新领导者和…

zer0pts-2020-memo:由文件偏移处理不正确--引发的堆溢出

启动脚本 #!/bin/sh qemu-system-x86_64 \-m 256M \-kernel ./bzImage \-initrd ./rootfs.cpio \-append "root/dev/ram rw consolettyS0 oopspanic panic1 kaslr quiet" \-cpu kvm64,smep,smap \-monitor /dev/null \-nographic -enable-kvm/ # dmesg | grep page …

OpenAI推出ChatGPT已经过去一年多了,AI 取代了内容创作者吗

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

Docker容器监控-CIG

目录 一、CIG说明 1. CAdvisor 2. InfluxDB 3. Grafana 二、环境搭建 1. 创建目录 2. 编写 docker-compose.yml 3. 检查并运行容器 三、进行测试 1. 查看 influxdb 存储服务 是否能正常访问 2. 查看 cAdvisor 收集服务能否正常访问 3. 查看 grafana 展现服务&#…

蓝桥杯备赛Day9——链表进阶

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head = [1,2,3,4,5], n = 2 输出:[1,2,3,5]示例 2: 输入:head = [1], n = 1 输出:[]示例 3: 输入:head = [1,2], n = 1 输出:[1]提示: 链表中结点的数目为 sz1 <= sz <= 300 &l…

【软件激活_01】2024年Pycharm激活码

Pycharm激活码 关注公众号世说CV回复pycharm获得最新激活码。 效果 公众号图片

Redis 基本认识

文章目录 Redis八个特性Redis应用场景Redis应用缺陷Redis使用流程 Redis八个特性 速度快 原因: ① 单线程&#xff0c;避免了多线程竞争(如加锁/解锁)的时间开销 ② redis的数据存放在内存中 ③ 使用C语言编写&#xff0c;C语言更方便操做硬件 ④ Redis 源码优秀 利用键值对存…

C语言笔试题之求出三角形的最大周长

实例要求&#xff1a; 1、给定由一些正数&#xff08;代表长度&#xff09;组成的数组 nums &#xff1b;2、返回 由其中三个长度组成的、面积不为零的三角形的最大周长 &#xff1b;3、如果不能形成任何面积不为零的三角形&#xff0c;返回 0&#xff1b; 案例展示&#xff…

第4章 表单与类视图

学习目标 熟悉Flask处理表单的方式&#xff0c;能够归纳在Flask程序中如何处理表单 掌握Flask-WTF扩展包的安装&#xff0c;能够借助pip工具安装Flask-WTF扩展包 掌握使用Flask-WTF创建表单的方式&#xff0c;能够独立使用Flask-WTF创建表单 掌握在模板中渲染表单的方式&…

多路服务器技术如何处理大量并发请求?

在当今的互联网时代&#xff0c;随着用户数量的爆炸性增长和业务规模的扩大&#xff0c;多路服务器技术已成为处理大量并发请求的关键手段。多路服务器技术是一种并行处理技术&#xff0c;它可以通过多个服务器同时处理来自不同用户的请求&#xff0c;从而显著提高系统的整体性…