C++:二叉搜索树模拟实现(KV模型)

C++:二叉搜索树模拟实现(KV模型)

  • 前言
  • 模拟实现KV模型
  • 1. 节点封装
  • 2、前置工作(默认构造、拷贝构造、赋值重载、析构函数等)
  • 2. 数据插入(递归和非递归版本)
  • 3、数据删除(递归和非递归版本)
    • 3.1 查找待删除节点位置
    • 3.2 删除数据及相关节点调整
    • 3.3 完整代码以及递归和非递归版本
  • 四、查找数据
  • 五、中序遍历
  • 六、所有代码

前言

 二叉搜索树又称二叉排序树,他对数据有严格的要求,具体表现在以下几个方面:

  1. 如果一个根节点的左子树不为空,则左子树中所有节点的值都必须小于根节点的值;如果它的右子树不为空,则右子树中所有节点的值都必须大于根节点的值。
  2. 它的左右子树也都必须是一个二叉搜索树,也都必须满足第一条。
  3. 二叉搜索树中的每个节点都是唯一的,不允许重复!!!
    在这里插入图片描述

 二叉搜索树的实际应用主要分为K模型和KV模型。

  1. K模型即Key作为关键码,二叉搜索树中只存储Key一个数据。而关键码则是待搜索的值。比如:我们经常通过软件查找是否存在某个单词,是否拼写正确。
  2. KV模型存储的数据中,每个Key对应一个Value,即键值对<Key, Value>。 我们经常通过Key去查找对应的Val.比如:我们通过英文来查找对应的中文,就是一个最常见的KV场景。

模拟实现KV模型

1. 节点封装

由于是KV模型,我们需要存储Key和Value俩个值。同时二叉搜索树也是二叉树,我们需要它的左右节点。因此节点疯转如下:

template<class K, class V>
struct BSTreeNode
{K _key;V _value;BSTreeNode<K, V>* _left;BSTreeNode<K, V>* _right;//默认构造函数, 用于后续new创建节点BSTreeNode(const K& key, const V& value):_key(key), _value(value), _right(nullptr), _left(nullptr){}
};

2、前置工作(默认构造、拷贝构造、赋值重载、析构函数等)

接下来是KV模型封装的框架,以及默认构造、拷贝构造、赋值重载、析构函数。比较简单,就直接给出代码了哈。

template<class K, class V>class BSTree{typedef BSTreeNode<K, V> Node;//节点重命名public://默认构造BSTree():_root(nullptr){}//拷贝构造BSTree(BSTree<K, V>& t){_root = Copy(t._root);}//赋值重载BSTree<K, V>& operator=(BSTree<K, V> t){swap(_root, t._root);return *this;}//析构函数~BSTree(){Destory(_root);}private:Node* _root = nullptr;};
}

2. 数据插入(递归和非递归版本)

首先我们需要查找数据待插入的位置(为了保证插入数据后整体依然是一颗二叉搜索树).。同时查找插入位置时,只有key是有严格要求的,Value只是附带。
即:如果根节点为空,即是待插入数据位置;否则开始查找,如果待插入数据大于根节点往右子树节点走;如果待插入数据小于根节点往左子树节点走。不断循环,直到查找到空节点时,即为数据待插入的位置;如果查找到的大小和待插入数据值相等则返回false(确保二叉搜索树中的每个节点唯一)

【非递归版本】:

bool Insert(const K& key, const V& value)
{if (_root == nullptr)//根节点为空{_root = new Node(key, value);return true;}Node* cur = _root;Node* parent = nullptr;//后续插入数据链接时,需要和父节点相连while (cur){if (cur->_key > key)//待插入数据小于当前节点,往左子树查找{parent = cur;cur = cur->_left;}else if(cur->_key < key)//待插入数据大于当前节点,往右子树查找{parent = cur;cur = cur->_right;}else//待插入数据等于当前节点,不允许插入{return false;}}//链接Node* newNode = new Node(key, value); //链接时,我们无法确定插入节点时在父节点的左边还是右边,需要进一步比较if (parent->_key > key)parent->_left = newNode;elseparent->_right = newNode;return true;
}

【递归版本】:

bool InsertR(const K& key, const V& value)
{//由于我们查找位置需要从根节点开始查找,所以这里通过另一个函数来传递实现return _InsertR(_root, key, value);
}bool _InsertR(Node*& root, const K& key, const V& value)
{if (root == nullptr){//注意上述我们形参都是引用,所以不用新增Parent节点root = new Node(key, value);return true;}if (root->_key > key)//待插入数据小于当前节点,往左子树查找return _InsertR(root->_left, key, value);else if (root->_key < key)//待插入数据大于当前节点,往右子树查找return _InsertR(root->_right, key, value);elsereturn false;
}

3、数据删除(递归和非递归版本)

3.1 查找待删除节点位置

删除数据,我们首先需要和插入数据一样,先查找到待删除节点。和插入类似就不多说了。

【查找待删除数据】:

bool Erase(const K& key)
{if (_root == nullptr)//为空即不存在待删除数据return false;Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key > key)//待删除数据小于当前节点,往左子树查找{parent = cur;cur = cur->_left;}else if (cur->_key < key)//待删除数据大于当前节点,往右子树查找{parent = cur;cur = cur->_right;}else{//当前位置即为待删除节点,装备删除数据	}}return false;//整棵树中不存在待删除数据
}

3.2 删除数据及相关节点调整

插找到待删除数据后,显然如果只是简单将该节点删除,有可能将不满足二叉搜索树的要求,那怎么办呢?
删除数据分为以下三种情况:

  1. 左子树为空

左子树为空主要分为以下情形:右子树为空,左子树不为空;左右子树均为空(省略)。
在这里插入图片描述
 不管上述那种情况,我们发现只需将父节点的下一个节点指向待删除节点的右指针即可。但需要注意的是,如果待删除节点为根节点,它将没有父节点,需要单独处理。

【代码实现】:

if (cur->_left == nullptr)//左子树为空
{if (parent == _root)//cur为根节点{_root = cur->_right;}else{if (parent->_key > cur->_key)//待删除节点在父节点左子树中{parent->_left = cur->_right;}else//待删除节点在父节点右子树中{parent->_right = cur->_right;}}delete cur;
}
  1. 右子树为空

右子树为空分为单纯右子树为空和左右子树均为空(省)。具体处理方式和左子树为空类似就不多说了。
在这里插入图片描述
【代码实现】:

//左右子树均不为空,查找右子树最小元素进行交换后删除
if (parent == _root)//cur为根节点
{_root = cur->_left;}else{if (parent->_key > cur->_key){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;
}
  1. 左右子树均不为空

这种情况我们可以查找左子树最大值或右子树最小值和待删除删除节点进行交换,交换后我们可以转化为上述两种子问题来删除数据。(接下来博主以交换右子树最小值为例)
在这里插入图片描述

Node* subLeft = cur->_right;
Node* parent = cur;
while (subLeft->_left)
{parent = cur;subLeft = subLeft->_left;
}
//交换
swap(cur->_key, subLeft->_key);
swap(cur->_value, subLeft->_value);
//删除
if (parent->_right = subLeft)
{parent->_right = subLeft->_right;
}
else
{parent->_left = subLeft->_right;
}
delete subLeft;

3.3 完整代码以及递归和非递归版本

递归思路和非递归差球不多,就不一一分析了,下面直接给出两种实现方式代码。

【非递归版本】:

bool Erase(const K& key)
{if (_root == nullptr)return false;Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{//装备删除数据if (cur->_left == nullptr)//左子树为空{if (parent == _root)//cur为根节点{_root = cur->_right;}else{if (parent->_key > cur->_key){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if (cur->_right == nullptr)//右子树为空{if (parent == _root)//cur为根节点{_root = cur->_left;}else{if (parent->_key > cur->_key){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else{//左右子树均不为空,查找右子树最小元素进行交换后删除Node* subLeft = cur->_right;Node* parent = cur;while (subLeft->_left){parent = cur;subLeft = subLeft->_left;}//交换swap(cur->_key, subLeft->_key);swap(cur->_value, subLeft->_value);//删除if (parent->_right = subLeft){parent->_right = subLeft->_right;}else{parent->_left = subLeft->_right;}delete subLeft;}return true;}}return false;
}

【递归版本】:

//删除:递归版本
bool EraseR(const K& key)
{return _EraseR(_root, key);//同理,由于需要根节点,在通过一层函数来实现
}
bool _EraseR(Node*& root, const K& key)
{if (root == nullptr)//非找到return false;if (root->_key > key)//转化成递归子问题,在左子树中删除keyreturn _EraseR(root->_left, key);else if (root->_key < key)//转化成递归子问题,在右子树中删除keyreturn _EraseR(root->_right, key);else{//删除数据if (root->_left == nullptr){Node* del = root;root = root->_right;delete del;return true;}else if (_root->_right == nullptr){Node* del = root;root = root->_left;delete del;return true;}else{Node* subLeft = root->_right;while (subLeft->_left){subLeft = subLeft->_left;}//交换swap(root->_key, subLeft->_key);swap(root->_value, subLeft->_value);return _EraseR(root->_right, key); }}
}

四、查找数据

【递归版本】:

//查找:递归版本
Node* FindR(const K& key)
{return _FindR(_root, key);
}
Node* _FindR(Node*& root, const K& key)
{if (root == nullptr)return nullptr;if (root->_key > key)return _FindR(root->_left, key);else if (root->_key < key)return _FindR(root->_right, key);elsereturn root;
}

【非递归版本】:

//查找:非递归版本
Node* Find(const K& key)
{Node* cur = _root;while (cur){if (cur->_key > key)cur = cur->_left;else if (cur->_key < key)cur = cur->_right;else{//找到了return cur;}}return nullptr;
}

五、中序遍历

//中序遍历
void Inorder()
{_Inorder(_root);cout << endl;
}void _Inorder(Node* root)
{if (root == nullptr)return;_Inorder(root->_left);cout << root->_key << "->" << root->_value << " " << endl;_Inorder(root->_right);
}

六、所有代码

gitee:所有代码及测试代码

namespace KeyValue
{template<class K, class V>struct BSTreeNode{K _key;V _value;BSTreeNode<K, V>* _left;BSTreeNode<K, V>* _right;//默认构造函数BSTreeNode(const K& key, const V& value):_key(key), _value(value), _right(nullptr), _left(nullptr){}};template<class K, class V>class BSTree{typedef BSTreeNode<K, V> Node;public:
////默认构造BSTree():_root(nullptr){}//拷贝构造BSTree(BSTree<K, V>& t){_root = Copy(t._root);}//赋值重载BSTree<K, V>& operator=(BSTree<K, V> t){swap(_root, t._root);return *this;}//析构函数~BSTree(){Destory(_root);}
////插入, 非递归版本bool Insert(const K& key, const V& value){if (_root == nullptr){_root = new Node(key, value);return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if(cur->_key < key){parent = cur;cur = cur->_right;}else{return false;}}//链接Node* newNode = new Node(key, value); if (parent->_key > key)parent->_left = newNode;elseparent->_right = newNode;return true;}// 插入: 递归遍布bool InsertR(const K& key, const V& value){return _InsertR(_root, key, value);}
///查找:非递归版本Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key > key)cur = cur->_left;else if (cur->_key < key)cur = cur->_right;else{//找到了return cur;}}return nullptr;}//查找:递归版本Node* FindR(const K& key){return _FindR(_root, key);}
///删除:非递归版本bool Erase(const K& key){if (_root == nullptr)return false;Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{//装备删除数据if (cur->_left == nullptr)//左子树为空{if (parent == _root)//cur为根节点{_root = cur->_right;}else{if (parent->_key > cur->_key){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else if (cur->_right == nullptr)//右子树为空{if (parent == _root)//cur为根节点{_root = cur->_left;}else{if (parent->_key > cur->_key){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else{//左右子树均不为空,查找右子树最小元素进行交换后删除Node* subLeft = cur->_right;Node* parent = cur;while (subLeft->_left){parent = cur;subLeft = subLeft->_left;}//交换swap(cur->_key, subLeft->_key);swap(cur->_value, subLeft->_value);//删除if (parent->_right = subLeft){parent->_right = subLeft->_right;}else{parent->_left = subLeft->_right;}delete subLeft;}return true;}}return false;}//删除:递归版本bool EraseR(const K& key){return _EraseR(_root, key);}
///中序遍历void Inorder(){_Inorder(_root);cout << endl;}void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_key << "->" << root->_value << " " << endl;_Inorder(root->_right);}private:Node* Copy(Node*& root){if (root == nullptr)return nullptr;Node* newRoot = new Node(root->_key, root->_value);newRoot->_left = Copy(root->_left);newRoot->_right = Copy(root->_right);return newRoot;}void Destory(Node*& root){if (root == nullptr)return;Destory(root->_right);Destory(root->_left);delete root;root = nullptr;}bool _EraseR(Node*& root, const K& key){if (root == nullptr)return false;if (root->_key > key)return _EraseR(root->_left, key);else if (root->_key < key)return _EraseR(root->_right, key);else{//删除数据if (root->_left == nullptr){Node* del = root;root = root->_right;delete del;return true;}else if (_root->_right == nullptr){Node* del = root;root = root->_left;delete del;return true;}else{Node* subLeft = root->_right;while (subLeft->_left){subLeft = subLeft->_left;}//交换swap(root->_key, subLeft->_key);swap(root->_value, subLeft->_value);return _EraseR(root->_right, key); }}}bool _InsertR(Node*& root, const K& key, const V& value){if (root == nullptr){root = new Node(key, value);return true;}if (root->_key > key)return _InsertR(root->_left, key, value);else if (root->_key < key)return _InsertR(root->_right, key, value);elsereturn false;}Node* _FindR(Node*& root, const K& key){if (root == nullptr)return nullptr;if (root->_key > key)return _FindR(root->_left, key);else if (root->_key < key)return _FindR(root->_right, key);elsereturn root;}Node* _root = nullptr;};
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/460873.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++面试宝典第27题:完全平方数之和

题目 给定正整数 n,找到若干个完全平方数(比如:1、4、9、16、...),使得它们的和等于n。你需要让组成和的完全平方数的个数最少。 示例1: 输入:n = 12 输出:3 解释:12 = 4 + 4 + 4。 示例2: 输入:n = 13 输出:2 解释:13 = 4 + 9。 解析 这道题主要考察应聘者对于…

2024年【R2移动式压力容器充装】考试内容及R2移动式压力容器充装免费试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 R2移动式压力容器充装考试内容参考答案及R2移动式压力容器充装考试试题解析是安全生产模拟考试一点通题库老师及R2移动式压力容器充装操作证已考过的学员汇总&#xff0c;相对有效帮助R2移动式压力容器充装免费试题学…

【自然语言处理】P4 神经网络基础 - 激活函数

目录 激活函数SigmoidTanhReLUSoftmax 本节博文介绍四大激活函数&#xff0c;Sigmoid、Tanh、ReLU、Softmax。 激活函数 为什么深度学习需要激活函数&#xff1f; 博主认为&#xff0c;最重要的是 引入非线性。 神经网络是将众多神经元相互连接形成的网络。如果神经元没有激…

基于微信小程序的校园二手交易平台

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

Python进程之串行与并行

串行和并行 串行指的是任务的执行方式。串行在执行多个任务时&#xff0c;各个任务按顺序执行&#xff0c;完成一个之后才能进行下一个。&#xff08;早期单核CPU的情况下&#xff09; 并行指的是多个任务在同一时刻可以同时执行&#xff08;前提是多核CPU&#xff09;&#…

vueRouter中Hash模式和History模式有什么区别

VueRouter是Vue.js官方推荐的前端路由库&#xff0c;它提供了一种方便的方式来构建单页应用&#xff08;SPA&#xff09;。在使用VueRouter时&#xff0c;我们可以选择不同的路由模式&#xff0c;其中最常见的是Hash模式和History模式。本文将深入探讨这两种模式的区别&#xf…

【C/C++】整数及乘积的溢出问题

文章目录 一、为什么会溢出&#xff1f;二、怎样解决&#xff1f;三、看个例题四、补充&#xff1a;scanf和cin的区别 一、为什么会溢出&#xff1f; 整数乘积的溢出问题是指两个整数相乘得到的结果超过了所能表示的数据类型的范围。 在计算机中&#xff0c;整数的表示是有限…

2月7日作业

分别通过select、多进程、多线程实现一个并发服务器 #include <myhd.h> #define IP "192.168.250.100" #define PORT 8888 int deal_cli_msg(int newfd,struct sockaddr_in cin) {char buf[128] "";while(1){bzero(buf,sizeof(buf));int res recv…

Java完整版宿舍管理

项目技术&#xff1a; springboot layui idea mysql5.7 jdk1.8 maven3 有需要该项目的小伙伴可以私信我你的Q。 功能描述&#xff1a; &#xff08;1&#xff09;基本信息管理 基本信息分为学生信息和宿舍信息两部分&#xff0c;其功能是负责维护这些信息&#xff0c…

Ubuntu22.04 gnome-builder gnome C 应用程序习练笔记(二)

gnome-builder创建的程序&#xff0c;在工程树中有三个重要程序&#xff1a;main主程序、application应用程序和window主窗口程序。main整个程序的起始&#xff0c;它会操作application生产应用环境&#xff0c;application会操作window生成主窗口&#xff0c;于是就有了 appli…

CoreSight学习笔记

文章目录 1 Components1.1 ROM Table 2 使用场景2.1 Debug Monitor中断2.1.1 参考资料 2.2 Programming the cross halt2.2.1 编程实现2.2.2 参考资料 2.3 CTI中断2.3.1 编程实现2.3.1.1 准备工作2.3.1.2 触发中断2.3.1.3 中断响应 2.3.2 参考资料 1 Components 1.1 ROM Table…

AOP相关

AOP相关 什么是AOP&#xff1f; 常见的场景 记录操作日志 缓存处理 spring内置事务处理 AOP记录操作日志 定义切点表达式&#xff0c;确定要记录的方法 找到方法中有log注解的方法 获得方法 获得方法的参数 spring中的事务实现 spring中的事务分声明式事务和编程式事务…