Unity3d Shader篇(六)— BlinnPhong高光反射着色器

文章目录

  • 前言
  • 一、BlinnPhong高光反射着色器是什么?
    • 1. BlinnPhong高光反射着色器的工作原理
    • 2. BlinnPhong高光反射着色器的优缺点
      • 优点
      • 缺点
    • 3. 公式
  • 二、使用步骤
    • 1. Shader 属性定义
    • 2. SubShader 设置
    • 3. 渲染 Pass
    • 4. 定义结构体和顶点着色器函数
    • 5. 片元着色器函数
  • 三、效果
  • 四、总结
    • Phong 顶点高光反射着色器的优劣势
    • Phong 片元高光反射着色器的优劣势
    • Blinn-Phong 高光反射着色器的优劣势


前言

在 Unity 中,Shader 可以用来实现各种视觉效果。本教程将详细介绍如何编写一个基于 BlinnPhong高光反射着色器,使物体的颜色根据光照和法线方向的变化而变化。


一、BlinnPhong高光反射着色器是什么?

1. BlinnPhong高光反射着色器的工作原理

Blinn-Phong 高光反射着色器是一种常用的光照模型,它可以模拟物体表面在不同光源和观察角度下的明暗变化,从而增强物体的立体感和真实感。它是由 Jim Blinn 和 Bui Tuong Phong 在 1970 年代提出的,是对 Phong 光照模型的改进和简化。

Blinn-Phong 高光反射着色器的基本思想是,物体表面的颜色由三个分量组成:环境光分量,漫反射分量和高光分量。环境光分量表示物体表面接收到的来自四面八方的间接光照,它是一个常量,与光源和观察者的位置无关。漫反射分量表示物体表面接收到的来自光源的直接光照,它与光源和物体表面的法线的夹角成正比,即 Lambert 定律。高光分量表示物体表面反射的光线进入观察者的眼睛,它与光源,物体表面的法线和观察者的位置有关,即 Blinn-Phong 反射模型。

2. BlinnPhong高光反射着色器的优缺点

优点

简单易实现,计算量相对较低,适合实时渲染。
可以调节物体表面的各种参数,例如颜色,亮度,高光系数等,来模拟不同的材质效果。
可以与纹理贴图,法线贴图等技术结合,进一步增强物体表面的细节和真实感。
产生的高光效果比 Phong 模型更加柔和和自然。

缺点

不符合物理规律,只是一种经验模型,无法模拟复杂的光照现象,例如阴影,折射,散射等。
对于一些高光敏感的材质,例如金属,玻璃等,可能无法产生理想的效果。
对于一些弯曲的物体,例如球体,圆柱体等,可能会出现高光断裂的现象,因为半向量的变化不够平滑

3. 公式

在这里插入图片描述

二、使用步骤

1. Shader 属性定义

// 定义属性
Properties
{_Diffuse("Diffuse",Color)=(1,1,1,1) // 漫反射颜色属性,默认白色_Specular("Specular",Color)=(1,1,1,1) // 高光颜色性,默认白色_Gloss("Gloss",Range(1,256))=5// 高光反射系数
}

这段代码定义了Shader的属性,其中:
_Diffuse: 表示漫反射颜色属性,使用RGBA格式表示颜色,默认为白色 (1, 1, 1, 1)。
_Specular: 表示高光颜色属性,同样使用RGBA格式表示颜色,默认为白色 (1, 1, 1, 1)。
_Gloss: 表示高光反射系数属性,使用Range声明范围为1到256,默认值为5。

2. SubShader 设置

SubShader
{Tags{"RenderType" = "Opaque" // 渲染类型为不透明}LOD 100 // 细节级别
}

SubShader 定义了一组渲染设置,包括标签和细节级别。在这里,我们将渲染类型标签设置为 “Opaque”,表示物体是不透明的。

3. 渲染 Pass

Pass
{CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"#include "Lighting.cginc"
}

这里开始了渲染 Pass 部分。在这里,我们使用了 CGPROGRAM 指令来声明顶点着色器和片元着色器函数。#pragma vertex vert 和 #pragma fragment frag 分别指定了顶点着色器函数和片元着色器函数的名称。

然后,我们包含了 UnityCG.cginc 和 Lighting.cginc,它们提供了许多有用的函数和宏,用于简化编写 Shader。

4. 定义结构体和顶点着色器函数

// 定义结构体:从顶点到片元的数据传递
struct v2f
{float4 vertex : SV_POSITION; // 顶点位置fixed3 worldNormal : TEXCOORD0; // 世界空间法线fixed3 worldPos : TEXCOORD1; // 世界空间位置
};// 顶点着色器函数
v2f vert(appdata_base v)
{v2f o;o.vertex = UnityObjectToClipPos(v.vertex); // 顶点位置变换到裁剪空间fixed3 worldNormal = UnityObjectToWorldNormal(v.normal); // 世界空间法线o.worldNormal = worldNormal;//unity_ObjectToWorld 是一个变换矩阵,用于将顶点从对象空间变换到世界空间。//v.vertex 是顶点的位置信息。//mul() 函数表示矩阵相乘操作,这里将对象空间中的顶点位置矩阵与对象到世界的变换矩阵相乘,得到世界空间中的顶点位置。o.worldPos=mul(unity_ObjectToWorld,v.vertex);return o;
}

顶点着色器的输入是一个结构体 appdata_base ,它包含了顶点的位置和法线信息。顶点着色器的输出是一个结构体 v2f ,它包含了顶点的裁剪空间位置和世界空间法线和位置信息。

顶点着色器的主要逻辑是:

  1. 使用 UnityObjectToClipPos 函数,将顶点的位置从对象空间变换到裁剪空间,这是渲染管线的必要步骤。

  2. 使用 UnityObjectToWorldNormal 函数,将顶点的法线从对象空间变换到世界空间,这是为了计算光照效果所需的方向向量。

  3. 使用 unity_ObjectToWorld 矩阵,将顶点的位置从对象空间变换到世界空间,这是为了计算光照效果所需的坐标系。

5. 片元着色器函数

// 片段着色器函数
fixed4 frag(v2f i) : SV_Target
{// 获取环境光fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;// 漫反射// 获取光源位置//fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);// 获取光源位置简化fixed3 worldLightDir = normalize(UnityWorldSpaceLightDir(i.worldPos));fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * max(0, dot(worldLightDir, i.worldNormal));// 高光反射// 计算视角方向//fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.WorldPos);fixed3 viewDir = normalize(UnityWorldSpaceViewDir(i.worldPos));// 计算半向量fixed3 halfDir = normalize(worldLightDir + viewDir);// 计算高光颜色fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(max(0, dot(i.worldNormal, halfDir)), _Gloss);// 组合最终颜色fixed3 color = diffuse + ambient + specular;return fixed4(color, 1); // 输出颜色
}

片元着色器的输入是一个结构体 v2f ,它包含了顶点的裁剪空间位置和世界空间法线和位置信息。片元着色器的输出是一个 fixed4 类型的颜色值,它表示了片元的颜色。

片元着色器的主要逻辑是:

  1. 使用 UNITY_LIGHTMODEL_AMBIENT 宏,获取环境光的颜色,这是 Blinn-Phong 光照模型的第一个分量。

  2. 使用 UnityWorldSpaceLightDir 函数,获取光源的方向向量,这是为了计算漫反射和高光效果所需的角度。

  3. 使用 _LightColor0 和 _Diffuse 变量,获取光源的颜色和物体的漫反射颜色,然后使用 max 和 dot 函数,计算光源和法线的夹角的余弦值,这是 Blinn-Phong 光照模型的第二个分量。

  4. 使用 UnityWorldSpaceViewDir 函数,获取视线的方向向量,这是为了计算高光效果所需的角度。

  5. 使用 normalize 函数,计算视线方向和光源方向的半向量,这是为了简化高光效果的计算。

  6. 使用 _LightColor0 和 _Specular 变量,获取光源的颜色和物体的高光颜色,然后使用 max 和 dot 函数,计算法线和半向量的夹角的余弦值,然后使用 pow 函数,计算高光的强度,这是 Blinn-Phong 光照模型的第三个分量。

  7. 将环境光、漫反射和高光的颜色相加,得到最终的光照颜色,作为片元着色器的输出。

三、效果

左:Phong顶点高光反射着色器 中:Phong片元高光反射着色器 右:BlinnPhong高光反射着色器 (_Diffuse设置成了红色)

在这里插入图片描述

四、总结

Phong 片元高光反射着色器和 Phong 顶点高光反射着色器都是基于 Phong 光照模型的着色器,可以模拟物体表面的漫反射、环境光和高光效果,使物体看起来更加真实和立体。Blinn-Phong 高光反射着色器是对 Phong 高光反射着色器的改进和简化,主要区别在于计算高光反射时使用了半向量(half vector)代替镜面反射向量(reflection vector),从而减少了计算量和误差。

Phong 顶点高光反射着色器的优劣势

它的优势是:
在顶点着色器中计算光照颜色,减少了片元着色器的计算量,提高了性能和效率。

它的劣势是:会导致光照效果不够精细,尤其是在物体表面有弯曲或者高光区域时,会出现明显的锯齿或者平面化的现象。它不能处理复杂的光照情况,例如多光源、阴影、透明度、反射、折射等,需要使用更高级的着色器来实现。

使用场景:
当需要模拟物体表面的光照效果,但又不需要太高的精度和细节时,可以使用这种着色器。例如,一些简单的几何形状,或者一些远处的物体,或者一些不需要太多关注的物体,都可以使用这种着色器来提高性能和节省资源。

Phong 片元高光反射着色器的优劣势

它的优势是:
在片元着色器中计算光照颜色,提高了光照效果的精细度和真实度,尤其是在物体表面有弯曲或者高光区域时,可以避免出现锯齿或者平面化的现象。

它的劣势是:
会增加片元着色器的计算量,降低性能和效率,尤其是在物体的面数较多或者光源的数量较多时,会造成较大的开销。它不能处理复杂的光照情况,例如多光源、阴影、透明度、反射、折射等,需要使用更高级的着色器来实现。

使用场景:
当需要模拟物体表面的光照效果,且需要较高的精度和细节时,可以使用这种着色器。例如,一些复杂的几何形状,或者一些近处的物体,或者一些需要重点关注的物体,都可以使用这种着色器来提高视觉效果和真实感。

Blinn-Phong 高光反射着色器的优劣势

它的优势是:
简单易实现,计算量相对较低,适合实时渲染。
可以调节物体表面的高光反射系数和指数,来模拟不同的材质效果。
产生的高光效果比 Phong 模型更加柔和和自然,更接近真实的光照现象。

它的劣势是:
不符合物理规律,只是一种经验模型,无法模拟复杂的光照现象,例如阴影,折射,散射等。
对于一些高光敏感的材质,例如金属,玻璃等,可能无法产生理想的效果。
对于一些弯曲的物体,例如球体,圆柱体等,可能会出现高光断裂的现象,因为半向量的变化不够平滑。

使用场景:
当需要模拟物体表面的高光反射效果,且需要较好的效率和真实感时,可以使用这种着色器。例如,一些光滑的几何形状,或者一些中等距离的物体,或者一些需要突出高光的物体,都可以使用这种着色器来增强光照效果和立体感。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/461552.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8S之标签的介绍和使用

标签 标签定义标签实操1、对Node节点打标签2、对Pod资源打标签查看资源标签删除资源标签 标签定义 标签就是一对 key/value ,被关联到对象上。 标签的使用让我们能够表示出对象的特点,比如使用在Pod上,能一眼看出这个Pod是干什么的。也可以用…

加固平板电脑丨三防智能平板丨工业加固平板丨智能城市管理

随着智能城市的不断发展,人们对于城市管理的要求也在不断提高,这就需要高效、智能的城市管理平台来实现。而三防平板就是一款可以满足这一需求的智能设备。 三防平板是一种集防水、防尘、防摔于一体的智能平板电脑,它可以在复杂的环境下稳定运…

【十二】【C++】vector用法的探究

vector类创建对象 /*vector类创建对象*/ #if 1 #define _CRT_SECURE_NO_WARNINGS#include <iostream> using namespace std; #include <vector> #include <algorithm> #include <crtdbg.h>class Date {public:Date(int year 1900, int month 1, int …

自适应二次元404页面源码

自适应二次元404页面源码&#xff0c;HTMLCSSJS,喜欢二次元的朋友可以下载使用 蓝奏云&#xff1a;https://wfr.lanzout.com/iuPNQ1ns7dxg

js中new操作符详解

文章目录 一、是什么二、流程三、手写new操作符 一、是什么 在JavaScript中&#xff0c;new操作符用于创建一个给定构造函数的实例对象 例子 function Person(name, age){this.name name;this.age age; } Person.prototype.sayName function () {console.log(this.name) …

STM32控制JQ8400语音播报模块

时间记录&#xff1a;2024/2/7 一、JQ8400引脚介绍 标示说明ONE LINE一线操作引脚BUSY忙信号引脚&#xff0c;正在播放语音时输出高电平RX串口两线操作接收引脚TX串口两线操作发送引脚GND电源地引脚DC-5V电源引脚&#xff0c;3.3-5VDAC-RDAC输出右声道引脚DAC-LDAC输出左声道…

华为第二批难题一:基于预训练AI模型的元件库生成

我的理解&#xff1a;华为的这个难道应该是想通过大模型技术&#xff0c;识别元件手册上的图文内容&#xff0c;与现有建库工具结合&#xff0c;有潜力按标准生成各种库模型。 正好&#xff0c;我们正在研究&#xff0c;利用知识图谱技术快速生成装配模型&#xff0c;其中也涉…

内网渗透靶场02----Weblogic反序列化+域渗透

网络拓扑&#xff1a; 攻击机&#xff1a; Kali: 192.168.111.129 Win10: 192.168.111.128 靶场基本配置&#xff1a;web服务器双网卡机器&#xff1a; 192.168.111.80&#xff08;模拟外网&#xff09;10.10.10.80&#xff08;模拟内网&#xff09;域成员机器 WIN7PC192.168.…

【CV论文精读】EarlyBird: Early-Fusion for Multi-View Tracking in the Bird’s Eye View

【CV论文精读】EarlyBird: Early-Fusion for Multi-View Tracking in the Bird’s Eye View 0.论文摘要 多视图聚合有望克服多目标检测和跟踪中的遮挡和漏检挑战。多视图检测和3D对象检测中的最新方法通过将所有视图投影到地平面并在鸟瞰视图&#xff08;BEV&#xff09;中执…

手撸一个M3U8下载插件

M3U8嗅探下载 思路与核心代码 基本思路 ​ M3U8视频格式是一种基于HTTP Live Streaming&#xff08;HLS&#xff09;协议的视频文件格式。它是苹果公司开发的&#xff0c;目前广泛应用于iOS、macOS和tvOS等系统中。与传统的视频格式不同&#xff0c;M3U8视频格式将整个视频分…

VMware17上安装centos7.9

一、下载安装包&#xff1a; 1、VMware安装 VMware 下载地址&#xff1a; https://www.vmware.com/cn/products/workstation-pro.html VMware下载后安装即可 安装教程可以参考VMware安装教程 2、CentOs7.9下载地址&#xff1a; http://mirrors.aliyun.com/centos/7.9.2009/iso…

分布式系统架构介绍

1、为什么需要分布式架构&#xff1f; 增大系统容量&#xff1a;单台系统的性能瓶颈&#xff0c;多台机器才能应对大规模的应用场景&#xff0c;所以就需要我们的应用支撑平台具备分布式架构。 加强系统的可用&#xff1a;为了满足业务的SLA要求&#xff0c;需要通过分布式架构…