RedissonClient妙用-分布式布隆过滤器

目录

布隆过滤器介绍

布隆过滤器的落地应用场景

高并发处理 

多个过滤器平滑切换

分析总结


布隆过滤器介绍

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。

它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。

什么业务场景需要使用这个布隆过滤器呢?我个人觉得是对误判数据不敏感。比如,在一个质检系统中,客服人员对重复的录音是非常敏感的,至于少了一些录音,对他们来说是无所谓的。

刚刚好,我们使用布隆过滤器对录音文件名进行过滤,布隆过滤器返回true的时候,我们把这部分录音给丢弃掉,返回false的时候,这部分数据就入库。而布隆过滤器返回false的时候,说明这个数据是100%不存在的,满足我们的应用场景。

布隆过滤器的落地应用场景

过滤代码

package com.tml.mouseDemo.service;import lombok.extern.slf4j.Slf4j;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.util.StringUtils;import javax.annotation.PostConstruct;
import java.time.Duration;/*** 分布式布隆过滤器的实现*/
@Service
@Slf4j
public class BloomFilterService {@Autowiredprivate RedissonClient redissonClient;private RBloomFilter bloomFilter;@PostConstructpublic void init() {//参数:布隆过滤器的名字bloomFilter = redissonClient.getBloomFilter("repeatAudioFileName");// 初始化布隆过滤器  预计数据量   误判率boolean b = bloomFilter.tryInit(50000L, 0.03);log.info("repeatAudioFileName bloomFilter tryInit :{}", b);}public boolean checkFileNameRepeat(String audioFileName) {if (!StringUtils.hasText(audioFileName)) {throw new NullPointerException("audioFileName is empty");}//通过setNx的原子操作,保证在多个布隆过滤器之间有一个平滑的过度boolean setIfAbsent = redissonClient.getBucket(audioFileName).setIfAbsent("1", Duration.ofHours(1));if (!setIfAbsent) {log.info("this file is repeat!");return true;}boolean contains = bloomFilter.contains(audioFileName);if (!contains) {boolean add = bloomFilter.add(audioFileName);log.info("checkFileNameRepeat not contain:{} add:{}", audioFileName, add);//添加失败,说明过滤器中已经存在这个元素了return !add;}return true;}}

代码说明

高并发处理 

contains()和add()是两个操作,在多线程并发条件下,需要结合这两个方法的返回值来综合判断,是不是布隆过滤器包含这个元素。

多个过滤器平滑切换

setIfAbsent()这个操作是一个更加严谨的操作,考虑到实际场景中是有多个布隆过滤器的,在第一个布隆过滤器和第二个布隆过滤器进行切换的时候,怎么做到平滑的切换呢?

比如,我们的应用场景中,每天都会创建一个布隆过滤器,而录音的数据是源源不断的推送过来的,但是我们录音数据有一个特点是,相同的录音的数据可能会多次推送,并且多次的最大间隔不会超过1小时

假设repeatAudioFileName-20240206这个过滤器中已经包含了某个录音文件A,刚刚好时间到了20230207这天,需要重新创建布隆过滤器,在repeatAudioFileName-20240207这个过滤器中,恰好又有相同的文件进来了需要判断,在新的过滤器中刚好没有这个文件,这个时候,又会将录音A文件入库,这个就是业务异常了。

优化后的方案如下

优化的方案的代码就是如上

对应的压测代码也发一下

    @Testpublic void testRedis() throws InterruptedException {int threadSize = 100;String fileName = "sagfdsfgewfgdsghf25870.mkv";long start = System.currentTimeMillis();CyclicBarrier cyclicBarrier = new CyclicBarrier(threadSize);CountDownLatch countDownLatch = new CountDownLatch(threadSize);for (int i = 0; i < threadSize; i++) {new Thread(() -> {try {cyclicBarrier.await();boolean b = bloomFilterService.checkFileNameRepeat(fileName);log.info("checkFileNameRepeat----------:{}", b);} catch (Exception e) {e.printStackTrace();} finally {countDownLatch.countDown();}}, "repeat_test_" + i).start();}countDownLatch.await();long end = System.currentTimeMillis();log.info("start:{}-- cost:{} ms", start, (end - start));}

分析总结

布隆过滤器有对应的优缺点,是不是使用你们的业务场景,需要想清楚。上面的案例中,之所以不用数据库的唯一约束,是因为我们使用了sharding-jdbc分库分表,相同的文件名的数据对应的订单id不一样,也不是在一个表中,不好控制。

顺便说一下,布隆过滤器的应用场景还是很广泛的,在以太坊ETH底层实现中,就用了布隆过滤器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/461768.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GPT-4模型中的token和Tokenization概念介绍

Token从字面意思上看是游戏代币&#xff0c;用在深度学习中的自然语言处理领域中时&#xff0c;代表着输入文字序列的“代币化”。那么海量语料中的文字序列&#xff0c;就可以转化为海量的代币&#xff0c;用来训练我们的模型。这样我们就能够理解“用于GPT-4训练的token数量大…

《Git 简易速速上手小册》第6章:Git 在持续集成/持续部署(CI/CD)中的应用(2024 最新版)

文章目录 6.1 CI/CD基础6.1.1 基础知识讲解6.1.2 重点案例&#xff1a;为 Python Web 应用实现 CI/CD6.1.3 拓展案例 1&#xff1a;自动化部署到云平台6.1.4 拓展案例 2&#xff1a;使用 Docker 容器化部署 6.2 Git 与自动化测试6.2.1 基础知识讲解6.2.2 重点案例&#xff1a;为…

C++类和对象(7)

目录 3. 友元 3.1 友元函数 3.2 友元类 4. 内部类 5.匿名对象 6.拷贝对象时的一些编译器优化 7. 再次理解类和对象 3. 友元 友元提供了一种突破封装的方式&#xff0c;有时提供了便利。但是友元会增加耦合度&#xff0c;破坏了封装&#xff0c;所以 友元不宜多用。 友元…

Python数据分析 可视化数据Seaborn图表 这篇就够了

目录 1.Seaborn图表概述 2.安装Seaborn图表 3.Seaborn图表的基本设置 3.1设置图表的背景风格 3.2 设置图表的边框 4.常见图表的绘制 41 .柱形图的绘制 4.2 折线图的绘制 4.3 散点图的绘制 1.Seaborn图表概述 Seaborn是一个基于Matplotlib的Python数据可视化库&#xff…

树与二叉树---数据结构

树作为一种逻辑结构&#xff0c;同时也是一种分层结构&#xff0c;具有以下两个特点&#xff1a; 1&#xff09;树的根结点没有前驱&#xff0c;除根结点外的所有结点有 且只有一个前驱。 2&#xff09;树中所有结点可以有零个或多个后继。 树结点数据结构 满二叉树和完全二…

元素的显示与隐藏

目录 1.元素的显示与隐藏 1.1 display属性 1.2 visibility 可见性 1.3 overflow 溢出 1.元素的显示与隐藏 1.1 display属性 1.2 visibility 可见性 1.3 overflow 溢出

kmeans聚类选择最优K值python实现

Kmeans算法中K值的确定是很重要的。 下面利用python中sklearn模块进行数据聚类的K值选择 数据集自制数据集&#xff0c;格式如下&#xff1a; 维度为3。 ①手肘法 手肘法的核心指标是SSE(sum of the squared errors&#xff0c;误差平方和)&#xff0c; 其中&#xff0c;Ci是第…

机器学习11-前馈神经网络识别手写数字1.0

在这个示例中&#xff0c;使用的神经网络是一个简单的全连接前馈神经网络&#xff0c;也称为多层感知器&#xff08;Multilayer Perceptron&#xff0c;MLP&#xff09;。这个神经网络由几个关键组件构成&#xff1a; 1. 输入层 输入层接收输入数据&#xff0c;这里是一个 28x…

基于华为云欧拉操作系统(HCE OS)容器化部署传统应用(Redis+Postgresql+Git+SpringBoot+Nginx)

写在前面 博文内容为 华为云欧拉操作系统入门级开发者认证(HCCDA – Huawei Cloud EulerOS)实验笔记整理认证地址&#xff1a;https://edu.huaweicloud.com/certificationindex/developer/9bf91efb086a448ab4331a2f53a4d3a1博文内容涉及一个传统 Springboot 应用HCE部署&#x…

stm32软件安装以及创建工程

文章目录 前言一、软件安装软件破解 二、创建工程三、创建项目创建组配置启动文件添加到组 为项目添加头文件路径创建源文件&#xff08;main函数文件&#xff09;使用寄存器配置引脚拼接好STLINK与stm32最小电路板的接线编写程序配置STLink下载程序配置寄存器配置13号端口&…

奋斗与诗意的三纲八目

人生得有一个基调、总的宗旨、指导思想、根据、根本。当人做出一个重大决定时&#xff0c;绝非偶然&#xff0c;一定是背后的宗旨在起作用。你每天起床的动力&#xff0c;是否能热情洋溢地做事&#xff0c;也是这个宗旨在起作用。念天地之悠悠独怆然而涕下&#xff0c;忧思难忘…

云计算运营模式介绍

目录 一、云计算运营模式概述 1.1 概述 二、云计算服务角色 2.1 角色划分 2.1.1 云服务提供商 2.1.2 云服务消费者 2.1.3 云服务代理商 2.1.4 云计算审计员 2.1.5 云服务承运商 三、云计算责任模型 3.1 云计算服务模式与责任关系图 3.2 云计算服务模式与责任关系解析…