【第二十三课】最小生成树:prime 和 kruskal 算法(acwing858,859 / c++代码 )

目录

前言

Prime算法--加点法

acwing-858 

代码如下

一些解释 

Kruskal算法--加边法

acwing-859

并查集与克鲁斯卡尔求最小生成树 

代码如下

一些解释  


前言

之前学最短路的时候,我们都是以有向图为基础的,当时我们提到如果是无向图,只要记得两个顶点处都要加边就好了。

而在最小生成树的问题中,我们所面临的大多都是无向图。

这个姐姐👇对这两种算法的讲解非常清晰,没有代码部分,但是对于理解这两种算法的做法很有帮助,推荐看一下。 

【数据结构 图 最小生成树 Prime和Kruskal算法】

截取自视频。

感觉总结的很好,就搬过来啦(侵删) 

Prime算法--加点法

prime算法也叫加点法,主要是通过不断将所有顶点都加入到生成树中实现的。

利用该算法求最小生成树的步骤就是:

从任意1个顶点开始,在其他所有顶点中,选出一个离它距离最近的顶点,将其与该顶点进行连线;之后我们看其他的顶点中   离这两个已经选中的点  之间的距离最短的点,再将其连线......

由此我们可以总结出,我们要看的是:其他顶点中 到已经选出的这些顶点的集合 距离最短的点,我们把这个集合称为生成树,这里可以理解哈。

因此我们可以判断dist数组的含义应该是:存储每一个顶点到 集合(也就是生成树) 的最短距离。

prime算法的代码和dijkstra算法的实现是差不多的,主要区别就是dist数组的含义。前者是找离这个集合最短距离的点,后者找的是离某个源点距离最短的点

下面这个图模拟我们prime算法的手算的步骤

方便大家理解啦~ 

prime算法时间复杂度是O(n^2),适用于解决稠密图的问题。 

下面是模板题:

acwing-858 

可以看出数据范围边数远大于点数,属于稠密图。

与dijkstra算法的思路是差不多的,直接看代码把 

代码如下

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=510, INF=0x3f3f3f3f;
int n,m;
int g[N][N];
int dist[N];//存储每一个顶点到 集合(也就是生成树) 的最短距离
bool st[N];
int prime()
{memset(dist,0x3f,sizeof dist);int ans=0;for(int i=0;i<n;i++)//要加入所有的顶点,因此要循环n次{int t=-1;for(int j=1;j<=n;j++){if(!st[j] && (t==-1 || dist[t]>dist[j])){t=j;}}if(i && dist[t]==INF)return INF;if(i)ans+=dist[t];//第一个顶点权值是0,没必要再加一次,因此存在该if语句//选中t之后,比较原来的各个顶点到生成树的距离 与 各顶点与t顶点的权值的大小关系for(int j=1;j<=n;j++){dist[j]=min(dist[j],g[t][j]);}st[t]=1;}return ans;
}
int main()
{cin>>n>>m;memset(g,0x3f,sizeof g);for(int i=0;i<m;i++){int a,b,c;cin>>a>>b>>c;g[a][b]=g[b][a]=min(g[a][b],c);}int t=prime();if(t==INF)puts("impossible");else cout<<t<<endl;return 0;
}

一些解释 

1.if(i && dist[t]==INF)return INF; 

这里我们判断除了第一个顶点之外的其他顶点,到生成树的距离是否是无穷大,如果是无穷大说明图不连通,无法构成生成树

由于我们外层循环只控制循环次数,表示要加入n个顶点,且i从0开始,说明了第一个顶点是作为第0次循环实现的,因此这里排除第一个顶点,直接判断 i 就可以

为什么要跳过第一个顶点?

如果我们不跳过第一个顶点,那么在第一次循环时,由于所有顶点到生成树的距离都被初始化为无穷大,所以会直接返回无穷大,这显然是不正确的。因此,我们需要在第一次循环时跳过这个检查。

2.dist[j]=min(dist[j],g[t][j]); 

这里遍历各个顶点,判断 其原始的dist[j]与添加了 t 顶点之后,t与j顶点之间的权值 的大小关系,从而更新出每个顶点到生成树的距离。(因为既然t已经被加入到生成树中,那么到t的权值也就是到生成树的距离啦。)

把prime与dijkstra的代码放在一起对比一下

Kruskal算法--加边法

kruskal算法与prime对应是加边法,主要通过不断加边,连接到所有顶点之后就得到了最小生成树。

利用这种方法求最小生成树的步骤是:

在所有的边中不断的找最小的边加入到我们最小生成树的集合中,直到将所有顶点都连入。在加边过程中,避免成环即可。

曾经学数据结构的时候,手算我还是比较喜欢用克鲁斯卡尔算法的哈哈哈,感觉加边理解上好像更简单一点。

acwing-859

并查集与克鲁斯卡尔求最小生成树 

我们记得在并查集算法中,进行两个集合的合并和查找操作,就是利用树型结构实现的,在克鲁斯卡尔算法求最小生成树时,我们最终就是将顶点都连在一起算是得到了最小生成树,因此我们可以想着利用并查集的思想来实现克鲁斯卡尔求最小生成树。

嗯,,可以想一下二者的联系。我通过这样可以理解二者的关联。

下面是gpt的解释,更全面和专业一点hh,可以看看帮助理解一下~

应该是可以理解啦。 

需要的话可以回顾一下并查集的知识,之前写过哒

【第十四课】并查集(acwing-837连通块中点的数量 / c++代码 / 思路详解) 

代码如下

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+10;
int n,m;
int p[N];
struct Edge{int a,b,w;//运算符重载函数bool operator< (const Edge &W)const{return w<W.w;}
}edges[N];
int find(int x)
{if(p[x]!=x)p[x]=find(p[x]);return p[x];
}
int main()
{cin>>n>>m;for(int i=0;i<m;i++){int a,b,w;cin>>a>>b>>w;edges[i]={a,b,w};}sort(edges,edges+m);//每个顶点都单独处在一个集合里for(int i=1;i<=n;i++)p[i]=i;int res=0,count=0;//res累加权值 count存储加入的边数for(int i=0;i<=m;i++)//遍历排好序的边的信息{int a=edges[i].a,b=edges[i].b,w=edges[i].w;a=find(a),b=find(b);//如果该边的两个顶点不连通 说明不会形成环if(a!=b){p[a]=b;res+=w;count++;}}if(count<n-1)puts("impossible");//如果边数并不符合 说明不存在最小生成树else cout<<res;return 0;
}

一些解释  

sort(edges,edges+m);

这里我们调用sort函数,直接写的edge结构体-edge+m,就是因为在结构体中我们定义了重载

//运算符重载函数bool operator< (const Edge &W)const{return w<W.w;}

因为结构体中含有多个变量,如果不定义运算符重载,那么在使用 sort 函数等需要比较边的权值大小的地方,编译器将无法确定如何比较两个 Edge 对象 。

关于重载的一些知识,,,


今年就先写到这里啦。大家除夕快乐啦~

有问题欢迎指出,一起加油!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/462061.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

流畅的Python(八)-对象引用、可变性和垃圾回收

一、核心要义 本章主要讨论对象和对象名称之间的区别。名称不是对象&#xff0c;而是单独的东西。 二、代码示例 1、标识、相等性和别名 #!/usr/bin/env python # -*- coding: utf-8 -*- # Time : 2024/2/8 10:58 # Author : Maple # File : 01-标识,相等性和别名.p…

大型秒杀中如何减库存?JAVA 架构知识

目前来看&#xff0c;业务系统中最常见的就是预扣库存方案&#xff0c;像你在买机票、买电影票时&#xff0c;下单后一般都有个“有效付款时间”&#xff0c;超过这个时间订单自动释放&#xff0c;这都是典型的预扣库存方案。而具体到秒杀这个场景&#xff0c;应该采用哪种方案…

《剑指 Offer》专项突破版 - 面试题 30 和 31:详解如何设计哈希表以及利用哈希表设计更加高级、复杂的数据结构

目录 一、哈希表的基础知识 二、哈希表的设计 2.1 - 插入、删除和随机访问都是 O(1) 的容器 2.2 - 最近最少使用缓存 一、哈希表的基础知识 哈希表是一种常见的数据结构&#xff0c;在解决算法面试题的时候经常需要用到哈希表。哈希表最大的优点是高效&#xff0c;在哈希表…

Python算法题集_搜索二维矩阵II

Python算法题集_搜索二维矩阵II 题41&#xff1a;搜索二维矩阵II1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【双层循环】2) 改进版一【行尾检测】3) 改进版二【对角线划分】 4. 最优算法 本文为Python算法题集之一的代码示例 题41&#xf…

政安晨:政安晨:机器学习快速入门(三){pandas与scikit-learn} {模型验证及欠拟合与过拟合}

这一篇中&#xff0c;咱们使用Pandas与Scikit-liarn工具进行一下模型验证&#xff0c;之后再顺势了解一些过拟合与欠拟合&#xff0c;这是您逐渐深入机器学习的开始&#xff01; 模型验证 评估您的模型性能&#xff0c;以便测试和比较其他选择。 在上一篇中&#xff0c;您已经…

网络请求库axios

一、认识Axios库 为什么选择axios? 功能特点: 在浏览器中发送 XMLHttpRequests 请求在 node.js 中发送 http请求支持 Promise API拦截请求和响应转换请求和响应数据 补充: axios名称的由来? 个人理解没有具体的翻译. axios: ajax i/o system 二、axios发送请求 1.axios请求…

github拉取项目,pycharm配置远程服务器环境

拉取项目 从github上拉取项目到pycharmpycharm右下角选择远程服务器上的环境 2.1. 如图 2.2. 输入远程服务器的host&#xff0c;port&#xff0c;username&#xff0c;password连接 2.3. 选择服务器上的环境 链接第3点 注&#xff1a;如果服务器上环境不存在&#xff0c;先创建…

Qt简易登录界面

代码&#xff1a; #include "mywidget.h" #include "ui_mywidget.h"MyWidget::MyWidget(QWidget *parent): QWidget(parent), ui(new Ui::MyWidget) {ui->setupUi(this);ui->background->setPixmap(QPixmap(":/qt picture/logo.png"))…

单片机学习笔记---串口向电脑发送数据电脑通过串口控制LED

目录 串口向电脑发送数据 每隔一秒串口就发送一个递增的数给电脑 电脑通过串口控制LED 波特率的具体计算 HEX模式和文本模式 前两节是本节的理论基础&#xff0c;这节开始代码演示&#xff01; 串口向电脑发送数据 接下来先开始演示一下串口单向发送一个数字给电脑&…

【学习笔记】TypeScript编译选项

TS 中的编译选项 我们写了一个TS的文件&#xff0c;我们需要使用如下的命令将我们的TS文件转换为JS文件。 tsc xxx.ts 这样会产生一个对应的js文件 自动编译文件 编译文件时&#xff0c;使用 -W 指令后&#xff0c;TS编译器会自动监视文件的变化&#xff0c;并在文件发生变…

[HTTP协议]应用层的HTTP 协议介绍

目录 1.前言 2.使用fiddler抓包来观察HTTP协议格式 3.HTTP协议的基本格式 2.1请求 2,1.1首行 2.1.2请求头 2.1.3空行 2.2响应 2.2.1首行 2.2.2响应头 键值对 ​编辑2.2.3空行 2.2.4载荷(响应正文) 3.认识URL 3.1关于URL encode 1.前言 我们在前面的博客中,简单的…

windows编程-系统编程入门

1.进程线程概念&#xff08;简略版&#xff09; 1.1 进程 1.1.1 概念 我们编写的代码只是一个存储在硬盘的静态文件&#xff0c;通过编译后就会生成二进制可执行文件&#xff0c;当我们运行这个可执行文件后&#xff0c;它会被装载到内存中&#xff0c;接着 CPU 会执行程序中…