【多模态MLLMs+图像编辑】MGIE:苹果开源基于指令和大语言模型的图片编辑神器(24.02.03开源)

项目主页:https://mllm-ie.github.io/
论文 :基于指令和多模态大语言模型图片编辑 2309.Guiding Instruction-based Image Editing via Multimodal Large Language Models (加州大学圣巴拉分校+苹果)
代码:https://github.com/apple/ml-mgie | gradio_UI
媒体:机器之心的解析https://mp.weixin.qq.com/s/c87cUuyz4bUgfW2_ma5xpA

封面图
在这里插入图片描述
网友实测
在这里插入图片描述

一些概念

MLLMs: 多模态大语言模型

多模态大语言模型(Multimodal large language models ),是从预训练的LLM(大语言模型)初始化参数,MLLM添加了一个视觉编码器(visual encoder 例如,CLIP-L )来提取视觉特征 f f f,以及一个适配器(adapter) W W W(一般为简单神经网络)将特征 f f f投影到语言模态中。根据论文2304.Visual Instruction Tuning(LLaVA) :MLLMs的训练可以概括为:
在这里插入图片描述
其中 l l l C C C 中单词切分后(word token)的长度。 C C C可以是图像标题(特征对齐)或数据的多模态指令(指令调优)。MLLM 遵循下一个单词预测的标准自回归训练,然后可以作为各种视觉任务的视觉助手(visual assistant),例如视觉问答(visual question answering)和复杂的推理(complex reasoning)。尽管 MLLM 能够通过上述训练进行视觉感知,但它的输出仍然仅限于文本

MGIE : 多模态大语言模型引导的图像编辑

MGIE 表示:Multimodal large language model-Guided Image Editing (MGIE)

原文摘要:

基于指令(Instruction-based)的图像编辑通过自然命令提高了图像操作的可控性和灵活性,而无需详细描述或区域掩模。然而,人类的指令有时过于简短,目前的方法无法捕捉和遵循。多模态大语言模型(Multimodal large language models (MLLMs))在跨模态理解和视觉感知响应生成方面显示出很好的能力。
我们研究了(investigate) MLLM如何促进编辑指令(instructions),并提出 MLLM 引导的图像编辑 (MGIE)。
MGIE学习推导表达指令(derive expressive instructions)并提供明确指导(explicit guidance)。编辑模型共同捕获这种视觉想象,并通过端到端训练执行操作。我们评估了photoshop方式的修改全局照片优化局部编辑的各个方面。

大量的实验结果表明,表达性指令对于基于指令的图像编辑至关重要,我们的MGIE可以在保持竞争性推理效率的同时显著改善自动度量和人工评估。

Instruction-based image editing improves the controllability and flexibility of image manipulation via natural commands without elaborate descriptions or regional masks. However, human instructions are sometimes too brief for current methods to capture and follow. Multimodal large language models (MLLMs) show promising capabilities in cross-modal understanding and visual-aware response generation via LMs. We investigate how MLLMs facilitate edit instructions and present MLLM-Guided Image Editing (MGIE). MGIE learns to derive expressive instructions and provides explicit guidance. The editing model jointly captures this visual imagination and performs manipulation through end-to-end training. We evaluate various aspects of Photoshop-style modification, global photo optimization, and local editing. Extensive experimental results demonstrate that expressive instructions are crucial to instruction-based image editing, and our MGIE can lead to a notable improvement in automatic metrics and human evaluation while maintaining competitive inference efficiency.

主要方法

基本架构参考

InstructPix2Pix,LLaMA-7B为基线 ,着重借鉴了 LLaVA的模型

22.11.InstructPix2Pix: Learning to Follow Image Editing Instructions.
23.02.LLaMA: Open and Efficient Foundation Language Models
23.04.LLaVA: Large Language and Vision Assistant(Visual Instruction Tuning)
在这里插入图片描述

MGIR模型框架

使用的MLLMs预训练多模态模型 LLaVA-7B 进行指令调优(instruction tuning)并获得相应的视觉tokens : https://huggingface.co/liuhaotian/LLaVA-Lightning-7B-delta-v1-1 (只微调了词嵌入(word embedding)和LM head)

一个预训练的文本总结模型 Flan-T5-XXL(summarizer)获得对简洁的叙述:https://huggingface.co/google/flan-t5-xxl ,用在训练中,与生成精炼题词计算loss.
w一个是借助外部模型生成题词总结,一个是MLLM微调后输出的总结。
在这里插入图片描述

图 2:方法概述。

利用 MLLM 来增强基于指令的图像编辑 (“what will this image be like if [instruction]” ,来重写)。
训练好后,大视觉语言模型直接推导出简洁明确的表达指令(concise expressive instruction),并为预期目标提供明确的视觉相关指导(visual token)然后通过Edit head 注入到Diffusion模型。 扩散模型以端到端的方式通过编辑头联合训练和实现具有潜在想象的图像编辑。
其中,
Edit Head 表示:序列到序列模型 (4层transformer),它将来自 MLLM 的顺序视觉标记(sequential visual tokens)映射到语义上有意义的潜在编码 U = {u1, u2,…, uL} 作为编辑指导
在这里插入图片描述

具体算法训练流程

V V V表示:输入图片
X X X表示:指令(例如具体修改意图:改颜色、修改内容)
O O O表示: 最终的目标图像
T T T:表示: 序列到序列模型 (4层transformer),它将来自 MLLM 的顺序视觉标记(sequential visual tokens)映射到语义上有意义的潜在编码 U = {u1, u2,…, uL} 作为编辑指导
u u u表示: 最终提示修改的视觉语义编辑
F F F表示:stable diffusion的预训练模型
算法 1 展示了 MGIE 学习过程。
MLLM 通过指令损失 L_ins 导出简洁指令 ε。借助 [IMG] 的潜在想象,图片转变其模态并引导 图片合成结果图像。编辑损失 L_edit 用于扩散训练。由于大多数权重可以被冻结(MLLM 内的自注意力块),因而可以实现参数高效的端到端训练。
在这里插入图片描述
公式2
在这里插入图片描述
公式5
在这里插入图片描述

与主流方法对比

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/462293.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flask基础学习

1.debug、host、port 模式修改 1) debug模式 默认debug模式是off,在修改代码调试过程中需要暂停重启使用,这时可修改on模式解决。 同时在debug模式开启下可看到出错信息。 下面有关于Pycharm社区版和专业版修改debug模式的区别 专业版 社区版&#…

redis-sentinel(哨兵模式)

目录 1、哨兵简介:Redis Sentinel 2、作用 3、工作模式 4、主观下线和客观下线 5、配置哨兵模式 希望能够帮助到大家!!! 1、哨兵简介:Redis Sentinel Sentinel(哨兵)是用于监控redis集群中Master状态的工具,其已经被集成在re…

SQL--图形化界面工具

1.图形化界面工具 上述,我们已经讲解了通过DDL语句,如何操作数据库、操作表、操作表中的字段,而通过DDL语句执 行在命令进行操作,主要存在以下两点问题: 1).会影响开发效率 ; 2). 使用起来,并不直观&…

docker安装Yapi

docker安装Yapi 我试了很多次按照网上安装,但是看时间都是2022年之前的,所以我下载的mogodb都是last版本不是报错就是在报错的路上,后来一想那就换成2022年那些版本,也可能是last版本不兼容或者是比较低的版本。 我将mogodb换成…

Red Panda Dev C++ Maker 使用说明

https://download.csdn.net/download/HappyStarLap/88804678https://download.csdn.net/download/HappyStarLap/88804678 下载https://download.csdn.net/download/HappyStarLap/88804678: ​ 这个,就是我们将运行的文件。 ​ 里面加了许多我…

(每日持续更新)信息系统项目管理(第四版)(高级项目管理)考试重点整理第10章 项目进度管理(四)

博主2023年11月通过了信息系统项目管理的考试,考试过程中发现考试的内容全部是教材中的内容,非常符合我学习的思路,因此博主想通过该平台把自己学习过程中的经验和教材博主认为重要的知识点分享给大家,希望更多的人能够通过考试&a…

SPSS基础操作:对数据按照变量进行排序

在整理数据资料或者查看分析结果时,如果变量设置得非常多,我们有时会希望变量值能够按照变量的某一属性大小进行升序或者降序排列,比如我们想观察有哪些变量是名义变量或者有序变量,有哪些变量进行了变量标签操作或者值标签操作等…

【Linux】Shell编程

Shell编程 目录 Shell编程1.shell基础1.输入重定向 & 输出重定向2.管道3.特殊字符(3.1)通配符(3.2)引号(3.3)注释符(#) 4.别名5.命令历史history 2.Shell脚本Shell脚本的执行方式(1)为脚本文件加上可执行权限,然后在命令行直接输入shell脚本文件名执行。(2)sh shell脚本名(…

改变AI服务器:探索界面互连芯片技术的创新突破

根据TrendForce的数据,AI服务器的出货量约为130,000台,占全球服务器总出货量的约1%。随着微软、Meta、百度和字节跳动等主要制造商相继推出基于生成式AI的产品和服务,订单量显著增加。预测显示,在ChatGPT等应用的持续需求推动下&a…

【制作100个unity游戏之24】unity制作一个3D动物AI生态系统游戏3(附项目源码)

最终效果 文章目录 最终效果系列目录前言随着地面法线旋转在地形上随机生成动物不同部位颜色不同最终效果源码完结系列目录 前言 欢迎来到【制作100个Unity游戏】系列!本系列将引导您一步步学习如何使用Unity开发各种类型的游戏。在这第24篇中,我们将探索如何用unity制作一…

涤生大数据实战:基于Flink+ODPS历史累计计算项目分析与优化(上)

涤生大数据实战:基于FlinkODPS历史累计计算项目分析与优化(一) 1.前置知识 ODPS(Open Data Platform and Service)是阿里云自研的一体化大数据计算平台和数据仓库产品,在集团内部离线作为离线数据处理和存…

电脑通电自启动设置

首先要进入BIOS,以华硕为例,按下电源键,在开机之前按下delete键,其他电脑可能是esc或者某个f键,请自行查找。 进入BIOS后要找到电源管理,可以在高级选项中找一找,如上图右下角选择高级模式。 …