动态扩缩容下的全局流水号设计

关于全局流水号,业内用的比较多的就是雪花算法,一直没理解在动态扩缩容下其中的workId和

datacenterId如何设置,查到了几个方法:reidis中取,待后期实践下。

先简单的介绍一下雪花算法,雪花算法生成的Id由:1bit 不用 + 41bit时间戳+10bit工作机器id+12bit序列号,如下图:

不用:1bit,因为最高位是符号位,0表示正,1表示负,所以这里固定为0
时间戳:41bit,服务上线的时间毫秒级的时间戳(为当前时间-服务第一次上线时间),这里为(2^41-1)/1000/60/60/24/365 = 49.7年
工作机器id:10bit,表示工作机器id,用于处理分布式部署id不重复问题,可支持2^10 = 1024个节点
序列号:12bit,用于离散同一机器同一毫秒级别生成多条Id时,可允许同一毫秒生成2^12 = 4096个Id,则一秒就可生成4096*1000 = 400w个Id


说明:上面总体是64位,具体位数可自行配置,如想运行更久,需要增加时间戳位数;如想支持更多节点,可增加工作机器id位数;如想支持更高并发,增加序列号位数

公司使用的 k8s 容器化部署服务应用,所以需要支持动态增加节点,并且每次部署的机器不一定一样时,就会有问题。参考了 雪花算法snowflake生成Id重复问题 其中的思想:

在redis中存储一个当前workerId的最大值
每次生成workerId时,从redis中获取到当前workerId最大值,并+1作为当前workerId,并存入redis
如果workerId为1023,自增为1024,则重置0,作为当前workerId,并存入redis
然后优化成以下逻辑:

定义一个 redis 作为缓存 key,然后服务每次初始化的时候都 incr 这个 key。
上面得到的 incr 的结果然后与 1024 取模。取模可以优化为:result & 0x000003FF
所以最后的代码为下面:

首先我们先定义雪花算法生成分布式 ID 类:

SnowflakeIdWorker.java

public class SnowflakeIdWorker {/** 开始时间截 (建议用服务第一次上线的时间,到毫秒级的时间戳) */private final long twepoch = 687888001020L;/** 机器id所占的位数 */private final long workerIdBits = 10L;/** 支持的最大机器id,结果是1023 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */private final long maxWorkerId = -1L ^ (-1L << workerIdBits);/** 序列在id中占的位数 */private final long sequenceBits = 12L;/** 机器ID向左移12位 */private final long workerIdShift = sequenceBits;/** 时间截向左移22位(10+12) */private final long timestampLeftShift = sequenceBits + workerIdBits;/** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)* <<为左移,每左移动1位,则扩大1倍* */private final long sequenceMask = -1L ^ (-1L << sequenceBits);/** 工作机器ID(0~1024) */private long workerId;/** 毫秒内序列(0~4095) */private long sequence = 0L;/** 上次生成ID的时间截 */private long lastTimestamp = -1L;//==============================Constructors=====================================/*** 构造函数* @param workerId 工作ID (0~1023)*/public SnowflakeIdWorker(long workerId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("workerId can't be greater than %d or less than 0", maxWorkerId));}this.workerId = workerId;}// ==============================Methods==========================================/*** 获得下一个ID (该方法是线程安全的)* @return SnowflakeId*/public synchronized long nextId() {long timestamp = timeGen();//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}//如果是同一时间生成的,则进行毫秒内序列if (lastTimestamp == timestamp) {//如果毫秒相同,则从0递增生成序列号sequence = (sequence + 1) & sequenceMask;//毫秒内序列溢出if (sequence == 0) {//阻塞到下一个毫秒,获得新的时间戳timestamp = tilNextMillis(lastTimestamp);}}//时间戳改变,毫秒内序列重置else {sequence = 0L;}//上次生成ID的时间截lastTimestamp = timestamp;//移位并通过或运算拼到一起组成64位的IDreturn ((timestamp - twepoch) << timestampLeftShift) //| (workerId << workerIdShift) //| sequence;}/*** 阻塞到下一个毫秒,直到获得新的时间戳* @param lastTimestamp 上次生成ID的时间截* @return 当前时间戳*/protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}/*** 返回以毫秒为单位的当前时间,从1970-01-01 08:00:00算起* @return 当前时间(毫秒)*/protected long timeGen() {return System.currentTimeMillis();}public static void main(String[] args) {SnowflakeIdWorker snowflakeIdWorker = new SnowflakeIdWorker(1);Set<Long> params = new HashSet<>();for (int i = 0; i < 3000_0000; i++) {params.add(snowflakeIdWorker.nextId());}System.out.println(params.size());}}


 

接着定义一个 ID 生成的接口以及实现类。

public interface IdManager {String getId();}下面是实现类@Slf4j
@Service("idManager")
public class IdManagerImpl implements IdManager {@Resource(name = "stringRedisTemplate")private StringRedisTemplate stringRedisTemplate;private SnowflakeIdWorker snowflakeIdWorker;@PostConstructpublic void init() {String cacheKey = KeyUtils.getKey("order", "snowflake", "workerId", "incr");Long increment = stringRedisTemplate.opsForValue().increment(cacheKey);long workerId = increment & 0x000003FF;log.info("IdManagerImpl.init snowflake worker id is {}", workerId);snowflakeIdWorker = new SnowflakeIdWorker(workerId);}@Overridepublic String getId() {long nextId = snowflakeIdWorker.nextId();return Long.toString(nextId);}
}

在服务每次上线的时候就会把之前的 incr 值加 1。然后与 1024 取模,最后 workerId 就会一直在 [0 ~ 1023] 范围内进行动态取值。


原文链接:https://blog.csdn.net/u012410733/article/details/121882691

还有的做法是依赖配置中心的数据,因为无论是扩缩容至少都要注册到注册中心上,那拿到注册中心上的ip和端口号来动态生成workId和datacenterId


import com.alibaba.cloud.nacos.NacosDiscoveryProperties;
import com.alibaba.cloud.nacos.NacosServiceManager;
import com.alibaba.nacos.api.exception.NacosException;
import com.alibaba.nacos.api.naming.NamingService;
import com.alibaba.nacos.api.naming.listener.AbstractEventListener;
import com.alibaba.nacos.api.naming.listener.Event;
import com.alibaba.nacos.api.naming.listener.NamingEvent;
import com.alibaba.nacos.api.naming.pojo.Instance;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;import javax.annotation.PostConstruct;
import java.text.DecimalFormat;
import java.util.Comparator;
import java.util.List;
import java.util.stream.Collectors;/*** SnowflakeId + Nacos*/
@Component
public class SnowflakeIdGenerator {protected final Logger logger = LoggerFactory.getLogger(this.getClass());@Autowiredprivate NacosServiceManager nacosServiceManager;@Autowiredprivate NacosDiscoveryProperties nacosDiscoveryProperties;private static SnowflakeIdWorker snowflakeIdWorker;private static int nodeId;@PostConstructpublic void run() throws Exception {init();}/*** 获取雪花Id** @return*/public static long nextId() {return snowflakeIdWorker.nextId();}/*** 获取当前节点Id** @return*/public static int nodeId() {return nodeId;}/*** 获取当前服务所有节点 + 增加服务监听** @throws NacosException*/private void init() throws NacosException {NamingService namingService = nacosServiceManager.getNamingService(nacosDiscoveryProperties.getNacosProperties());namingService.subscribe(nacosDiscoveryProperties.getService(), new AbstractEventListener() {@Overridepublic void onEvent(Event event) {if (-1 == nacosDiscoveryProperties.getPort()) {return;}nodeId = calcNodeId(((NamingEvent) event).getInstances());if (nodeId > 1024) {throw new IllegalArgumentException("Worker & Datacenter Id calc results exceed 1024");}long workerId = nodeId % 31;long datacenterId = (long) Math.floor((float) nodeId / 31);logger.info("nodeId:" + nodeId + " workerId:" + workerId + " datacenterId:" + datacenterId);snowflakeIdWorker = new SnowflakeIdWorker(workerId, datacenterId);}});}/*** 用ip+port计算服务列表的索引** @param instanceList* @return*/private int calcNodeId(List<Instance> instanceList) {List<Long> ipPosrList = instanceList.stream().map(x -> dealIpPort(x.getIp(), x.getPort())).sorted(Comparator.naturalOrder()).collect(Collectors.toList());return ipPosrList.indexOf(dealIpPort(nacosDiscoveryProperties.getIp(), nacosDiscoveryProperties.getPort()));}/*** ip补0 + 端口号** @param ip* @param port* @return*/private static Long dealIpPort(String ip, int port) {String[] ips = ip.split("\\.");StringBuilder sbr = new StringBuilder();for (int i = 0; i < ips.length; i++) {sbr.append(new DecimalFormat("000").format(Integer.parseInt(ips[i])));}return Long.parseLong(sbr.toString() + port);}}

代码在https://gitee.com/JiaXiaohei/snowflake-nacos

还有一种方法是这样获取的

@Configuration
public class SnowFlakeIdConfig {@Beanpublic SnowFlakeIdUtil propertyConfigurer() {return new SnowFlakeIdUtil(getWorkId(), getDataCenterId(), 10);}/*** workId使用IP生成* @return workId*/private static Long getWorkId() {try {String hostAddress = Inet4Address.getLocalHost().getHostAddress();int[] ints = StringUtils.toCodePoints(hostAddress);int sums = 0;for (int b : ints) {sums = sums + b;}return (long) (sums % 32);}catch (UnknownHostException e) {// 失败就随机return RandomUtils.nextLong(0, 31);}}/*** dataCenterId使用hostName生成* @return dataCenterId*/private static Long getDataCenterId() {try {String hostName = SystemUtils.getHostName();int[] ints = StringUtils.toCodePoints(hostName);int sums = 0;for (int i: ints) {sums = sums + i;}return (long) (sums % 32);}catch (Exception e) {// 失败就随机return RandomUtils.nextLong(0, 31);}}}

有参考:雪花算法(snowflake)容器化部署支持动态增加节点_k8s雪花id重复-CSDN博客

用Nacos分配Snowflake的Worker ID_nacos workid-CSDN博客 雪花算法的原理和实现Java-CSDN博客

Leaf——美团点评分布式ID生成系统 - 美团技术团队 (meituan.com)

java 雪花算法 动态生成workId与dataCenterId - 胡子就不刮 - 博客园 (cnblogs.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/464187.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

elasticsearch增删改查

一、数据类型 1、字符串类型 &#xff08;1&#xff09;text &#xff08;2&#xff09;keyword 2、数值类型 &#xff08;1&#xff09;long、integer、short、byte、float、double 3、日期类型 &#xff08;1&#xff09;date 4、布尔类型 &#xff08;1&#xff0…

【大模型上下文长度扩展】YaRN:以文匹意,精细化衔接长篇

YaRN 核心问题上下文窗口限制位置编码的限制YaRN的原理 YaRN方法 NTK-aware NTK-by-parts Dynamic NTK子问题1: 高频信息丢失子解决1: “NTK-aware”插值子问题2: 相对局部距离的丢失子解决2: “NTK-by-parts”插值子问题3: 动态缩放子解决3: “Dynamic NTK”插值分析不足 核…

吹响AI PC号角!微软在Windows中不断增加“Copilot含量”

2024&#xff0c;会是AI PC元年吗&#xff1f;至少微软正在往这个方向努力。 本周&#xff0c;微软开始在Windows中测试Copilot的“新体验”&#xff0c;其中包括任务栏中的Copilot图标&#xff0c;当用户复制文本或图片时&#xff0c;Copilot操作菜单就会自动出现。 有媒体在…

Dubbo源码一:【Dubbo与Spring整合】

正常在项目中&#xff0c;我们都是在Spring环境下使用Dubbo&#xff0c;所以我们这里就在Spring的环境下看看Dubbo是如何运作的 入口 在源码下载下来之后&#xff0c;有一个dubbo-demo目录&#xff0c;里面有一个基于spring注解的子目录dubbo-demo-annotation, 里面有一个生产…

【leetcode热题100】子集 II

给你一个整数数组 nums &#xff0c;其中可能包含重复元素&#xff0c;请你返回该数组所有可能的子集&#xff08;幂集&#xff09;。 解集 不能 包含重复的子集。返回的解集中&#xff0c;子集可以按 任意顺序 排列。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,2] 输出…

最高的牛(C++)

有 N头牛站成一行&#xff0c;被编队为 1、2、3…N每头牛的身高都为整数。 当且仅当两头牛中间的牛身高都比它们矮时&#xff0c;两头牛方可看到对方。 现在&#xff0c;我们只知道其中最高的牛是第 P 头&#xff0c;它的身高是 H &#xff0c;剩余牛的身高未知。 但是&#xf…

git安装配置

1、下载安装 下载地址 2、配置git用户 git config --global user.name "yw" git config --global user.email "88888qq.com" 3、git init 初始化 4、生成ssh密钥 mkdir .ssh //创建文件夹cd .ssh //进入新建文件夹 ssh-keygen -t rsa // 输入密钥文…

Godot 游戏引擎个人评价和2024年规划(无代码)

文章目录 前言Godot C# .net core 开发简单评价Godot相关网址可行性 Godot(GDScirpt) Vs CocosGodot VS UnityUnity 的裁员Unity的股票Unity的历史遗留问题&#xff1a;Mono和.net core.net core的开发者&#xff0c;微软 个人的独立游戏Steam平台分成说明独立游戏的选题美术风…

【C++第二阶段】赋值运算符重载

你好你好&#xff01; 以下内容仅为当前认识&#xff0c;可能有不足之处&#xff0c;欢迎讨论&#xff01; 文章目录 赋值运算符重载 赋值运算符重载 实验①&#xff0c;还没有对析构运算符重载时 #include<iostream> #include<string> using namespace std;clas…

VR和AR傻傻分不清,一句话给你讲明白。

不说废话&#xff0c;直接说结论&#xff0c;虚拟现实&#xff08;Virtual Reality&#xff0c;VR&#xff09;和增强现实&#xff08;Augmented Reality&#xff0c;AR&#xff09;。如果现实是A&#xff0c;虚拟是B&#xff0c;那么VRB&#xff0c;ARAB&#xff0c;就这简单&…

算法学习——LeetCode力扣二叉树篇2

算法学习——LeetCode力扣二叉树篇2 107. 二叉树的层序遍历 II 107. 二叉树的层序遍历 II - 力扣&#xff08;LeetCode&#xff09; 描述 给你二叉树的根节点 root &#xff0c;返回其节点值 自底向上的层序遍历 。 &#xff08;即按从叶子节点所在层到根节点所在的层&#…

在Ubuntu22.04上部署ComfyUI

ComfyUI 是 一个基于节点流程的 Stable Diffusion 操作界面&#xff0c;可以通过流程&#xff0c;实现了更加精准的工作流定制和完善的可复现性。每一个模块都有特定的的功能&#xff0c;我们可以通过调整模块连接达到不同的出图效果&#xff0c;特点如下&#xff1a; 1.对显存…