【小沐学GIS】基于Android绘制三维数字地球Earth(OpenGL)

🍺三维数字地球系列相关文章如下🍺:
1【小沐学GIS】基于C++绘制三维数字地球Earth(OpenGL、glfw、glut)第一期
2【小沐学GIS】基于C++绘制三维数字地球Earth(OpenGL、glfw、glut)第二期
3【小沐学GIS】基于C++绘制太阳系SolarSystem(OpenGL、glfw、glut)
4【小沐学GIS】基于OpenSceneGraph(OSG)绘制三维数字地球Earth
5【小沐学GIS】基于C#绘制三维数字地球Earth(OpenGL)
6【小沐学GIS】基于Python绘制三维数字地球Earth(OpenGL)
7【小沐学GIS】基于Android绘制三维数字地球Earth(OpenGL)
8【小沐学GIS】基于WebGL绘制三维数字地球Earth(OpenGL)

文章目录

  • 1、简介
    • 1.1 Android
    • 1.2 OpenGL
      • 1.2.1 OpenGL绘图函数
      • 1.2.2 OpenGL顶点数据解析
      • 1.2.3 OpenGL顶点组装方式
    • 1.3 球体可视化
  • 12、测试代码
    • 12.1 OpenGL / android(3d)
    • 12.2 OpenGL / WorldWind / android(3d)
  • 结语

1、简介

1.1 Android

Android是一个开源的,基于Linux的移动设备操作系统,主要使用于移动设备,如智能手机和平板电脑。Android是由谷歌及其他公司带领的开放手机联盟开发的。
在这里插入图片描述

下载Andorid Studio开发环境:
https://developer.android.google.cn/studio?hl=zh-cn
在这里插入图片描述

1.2 OpenGL

OpenGL(Open Graphics Library)是一个跨平台、跨语言的图形编程接口(API)。它被广泛用于实现2D和3D图形渲染,并且是许多应用程序、游戏和网页浏览器的核心组件。
https://www.opengl.org/
在这里插入图片描述

1.2.1 OpenGL绘图函数

OpenGL提供的画图函数可以分为两大类:non-indexed draw和indexed draw。下面列举出了几个最常用的画图函数。

//1.基本方法:non-indexed draw
void glDrawArrays( GLenum mode, GLint first, GLsizei count);
//mutidraw + non-indexed draw
void glMultiDrawArrays( GLenum mode, GLint *first, GLsizei *count, GLsizei primcount);
//instance + non-indexed draw
void glDrawArraysInstanced( GLenum mode, GLint first,GLsizei count, GLsizei instancecount);
//indirect + non-indexed draw
void glDrawArraysIndirect(GLenum mode, const void *indirect);//2.基本方法:indexed draw
void glDrawElements(GLenum mode, GLsizei count, GLenum type, void * indices);
//mutidraw + indexed draw
void glMultiDrawElements( GLenum mode, GLsizei *count, GLenum type, void **indices, GLsizei primcount);
//instance + indexed draw
void glDrawElementsInstanced( GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei instancecount);
//indirect + indexed draw
void glDrawElementsIndirect(GLenum mode, GLenum type, const void *indirect);

glDrawArrays()和glDrawElements()是最基础的2个画图函数,每调用1次画图函数,CPU和GPU会进行一次数据通信,我们把这个过程叫做drawcall。

1.2.2 OpenGL顶点数据解析

VBO内顶点数据的解析方式,存放在VAO中,在填写顶点数据解析方式之前,需要绑定VAO。数据解析函数:

void glVertexAttribPointer(GLuint index, //分组编号GLint size, //单个顶点包含的数组元素数量GLenum type,//数组元素数据类型GLboolean normalized, //是否单位化GLsizei stride, //步长const void *offset);//首地址
void glEnableVertexAttribArray(GLuint index);//启用编号为index的分组

在这里插入图片描述

1.2.3 OpenGL顶点组装方式

有4类顶点组装(assembly)方式:point,line,triangle,patch。

GLenumoutput primtiveused in shaders
GL_POINTSpointsgeometry; fragment
GL_LINESlinesgeometry; fragment
GL_LINE_STRIPlinesgeometry; fragment
GL_LINE_LOOPlinesgeometry; fragment
GL_LINES_ADJACENCYlines_adjacencygeometry
GL_LINE_STRIP_ADJACENCYlines_adjacencygeometry
GL_TRIANGLEStrianglesgeometry; fragment
GL_TRIANGLE_STRIPtrianglesgeometry; fragment
GL_TRIANGLE_FANtrianglesgeometry; fragment
GL_TRIANGLES_ADJACENCYtriangles_adjacencygeometry
GL_TRIANGLE_STRIP_ADJACENCYtriangles_adjacencygeometry
GL_PATCHESpatchestessellation control

在这里插入图片描述

1.3 球体可视化

一个半圆绕直径所在直线旋转一周所成的空间几何体叫做球体,简称球,半圆的半径即是球的半径。球体是有且只有一个连续曲面的立体图形,这个连续曲面叫球面。
通过球面参数方程,可以将球面的参数表示为三个变量:半径r、极角θ和纬度φ。下面是一些实现步骤:

  1. 定义坐标系:首先需要选择一个参考点(如北极)作为原点,并确定x轴正方向指向该点的北方向。然后将y轴和z轴分别垂直于x轴和x轴,使它们与x轴的夹角分别为90°和270°。最后,将x, y 和 z 轴定义为一个三维坐标系。
  2. 将球面参数方程转换为球面坐标:假设球的半径为 r,则其球心坐标为 (0, 0, r),即 x = r * cos(θ) * sin(φ), y = -r * tan(θ)*cos(φ), z = r * sin( θ ) 。将这些点代入球面坐标中,可以得到一个球面上任意一点的坐标。
    在这里插入图片描述

12、测试代码

12.1 OpenGL / android(3d)

在这里插入图片描述

  • 界面布局文件(activity_main.xml)如下
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"xmlns:app="http://schemas.android.com/apk/res-auto"xmlns:tools="http://schemas.android.com/tools"android:layout_width="match_parent"android:layout_height="match_parent"tools:context=".MainActivity"><android.opengl.GLSurfaceViewandroid:id="@+id/gl_surface_view"android:layout_width="match_parent"android:layout_height="match_parent" /><LinearLayoutandroid:layout_width="match_parent"android:layout_height="48dp"android:layout_marginBottom="64dp"android:gravity="center"android:orientation="horizontal"android:paddingLeft="16dp"android:paddingRight="16dp"app:layout_constraintBottom_toBottomOf="parent"app:layout_constraintEnd_toEndOf="parent"app:layout_constraintStart_toStartOf="parent"app:layout_constraintTop_toBottomOf="@+id/gl_surface_view"><Buttonandroid:id="@+id/button"android:layout_width="84dp"android:layout_height="48dp"android:layout_marginLeft="2dp"android:text="纹理1" /><Buttonandroid:id="@+id/button2"android:layout_width="84dp"android:layout_height="48dp"android:layout_marginLeft="2dp"android:text="纹理2" /><Buttonandroid:id="@+id/button3"android:layout_width="84dp"android:layout_height="48dp"android:layout_marginLeft="2dp"android:text="纹理3" /><Switchandroid:id="@+id/switch1"android:layout_width="wrap_content"android:layout_height="wrap_content"android:layout_weight="1"android:text="传感器控制" /></LinearLayout></androidx.constraintlayout.widget.ConstraintLayout>

12.2 OpenGL / WorldWind / android(3d)

World Wind(简称WW,中文民间直译为世界风),是NASA发布的一个开放源代码(Open Source)的地理科普软件(由NASA Research开发,由NASA Learning Technologies来发展),它是一个可视化地球仪,将NASA、USGS以及其它WMS服务商提供的图像通过一个三维的地球模型展现,近期还包含了火星和月球的展现。

  • gov.nasa.worldwind 顶级包
  • gov.nasa.worldwind.awt 用于awt的组件
  • gov.nasa.worldwind.formats.gpx GPS轨道格式
  • gov.nasa.worldwind.formats.nmea GPS轨道格式
  • gov.nasa.worldwind.geom 几何与数学类
  • gov.nasa.worldwind.globes 地球、火星等星球的实现
  • gov.nasa.worldwind.layers 图层
  • gov.nasa.worldwind.layers.Earth 专用于地球的图层
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 界面布局文件(activity_main.xml)如下
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"xmlns:app="http://schemas.android.com/apk/res-auto"xmlns:tools="http://schemas.android.com/tools"android:layout_width="match_parent"android:layout_height="match_parent"tools:context=".MainActivity"><FrameLayoutandroid:id="@+id/globe"android:layout_width="match_parent"android:layout_height="match_parent"android:layout_alignParentLeft="true"android:layout_alignParentRight="true"android:layout_alignParentTop="true"></FrameLayout></androidx.constraintlayout.widget.ConstraintLayout>

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(✿◡‿◡)
感谢各位童鞋们的支持!( ´ ▽´ )ノ ( ´ ▽´)っ!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/464586.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【新书推荐】7.4 多重循环

本节必须掌握的知识点&#xff1a; for循环嵌套语句 示例二十五 代码分析 汇编解析 7.4.1 for循环嵌套语句 在我们总结中&#xff0c;语句块这个解释不知道读者是否感到不解&#xff0c;既然语句块里可以做任何事情&#xff0c;那么它的里面就可以再写一个循环语句&#xff0…

Swift 初见

Swift 初见 学习swift的记录 控制台输出 print("hello world")可以无分号&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 变量声明 let 常量声明 如果在常量声明后再次修改他会报错 var 变量声明 一个常量的值&#xf…

专业课135+总分400+西安交通大学815/909信号与系统考研电子信息与通信工程,真题,大纲,参考书。

经过将近一年的考研复习&#xff0c;终于梦圆西安交大&#xff0c;今年专业可815(和909差不多)信号与系统135&#xff0c;总分400&#xff0c;回想这一年的复习还是有很多经验和大家分享&#xff0c;希望可以对大家复习有所帮助&#xff0c;少走弯路。 专业课&#xff1a; 这…

BootStrap学习笔记JS插件(一)--模态弹出框

一、弹出框基础 <div class"modal show"><div class"modal-dialog"><div class"modal-content"><div class"modal-header"><button type"button" class"close" data-dismiss"mo…

Hadoop:认识MapReduce

MapReduce是一个用于处理大数据集的编程模型和算法框架。其优势在于能够处理大量的数据&#xff0c;通过并行化来加速计算过程。它适用于那些可以分解为多个独立子任务的计算密集型作业&#xff0c;如文本处理、数据分析和大规模数据集的聚合等。然而&#xff0c;MapReduce也有…

我主编的电子技术实验手册(03)——电阻的识别与测量

本专栏是笔者主编教材&#xff08;图0所示&#xff09;的电子版&#xff0c;依托简易的元器件和仪表安排了30多个实验&#xff0c;主要面向经费不太充足的中高职院校。每个实验都安排了必不可少的【预习知识】&#xff0c;精心设计的【实验步骤】&#xff0c;全面丰富的【思考习…

聚观早报 | 小米14 Ultra官宣;苹果汽车项目调整

聚观早报每日整理最值得关注的行业重点事件&#xff0c;帮助大家及时了解最新行业动态&#xff0c;每日读报&#xff0c;就读聚观365资讯简报。 整理丨Cutie 2月6日消息 小米14 Ultra官宣 苹果汽车项目调整 ROG游戏手机8系列推出福利 一加Ace 3原神刻晴定制机官宣 苹果i…

猫头虎分享已解决Bug || RuntimeError: size mismatch, m1: [32 x 100], m2: [500 x 10]

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

SpringCloud-Nacos服务分级存储模型

Nacos 服务分级存储模型是 Nacos 存储服务注册信息和配置信息的核心模型之一。它通过将服务和配置信息按照不同级别进行存储&#xff0c;实现了信息的灵活管理和快速检索&#xff0c;为微服务架构下的服务发现和配置管理提供了高效、可靠的支持。本文将对 Nacos 服务分级存储模…

Python中HTTP隧道的基本原理与实现

HTTP隧道是一种允许客户端和服务器之间通过中间代理进行通信的技术。这种隧道技术允许代理服务器转发客户端和服务器之间的所有HTTP请求和响应&#xff0c;而不需要对请求或响应内容进行任何处理或解析。Python提供了强大的网络编程能力&#xff0c;可以使用标准库中的socket和…

JAVA反射总结学习

初始反射反射的基本操作反射安全性问题 反射是指在Java运行状态中: 给定一个类对象(Class对象)&#xff0c;通过反射获取这个类对象(Class对象)的所有成员结构&#xff1b; 给定一个具体的对象&#xff0c;能够动态地调用它的方法及对任意属性值进行获取和赋值&#xff1b; …

【数据结构与算法】【小白也能学的数据结构与算法】递归 分治 迭代 动态规划 无从下手?一文通!!!

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《数据结构与算法&#xff1a;初学者入门指南》&#x1f4d8;&am…