【数据结构】哈希表的开散列和闭散列模拟实现

哈希思想

在顺序和树状结构中,元素的存储与其存储位置之间是没有对应关系,因此在查找一个元素时,必须要经过多次的比较。

顺序查找的时间复杂度为0(N),树的查找时间复杂度为log(N)。

我们最希望的搜索方式:通过元素的特性,不需要对比查找,而是直接找到某个元素。

这一个通过key与存储位置建立一一的思想就是hash思想。

哈希表就是基于哈希思想的一种具体实现。哈希表也叫散列表,是一种数据结构。无论有多少条数据,插入和查找的时间复杂度都是O(1),因此由于其极高的效率,被广泛使用。

建立映射关系:
例如集合{8,5,6,3,7,2,1,0}

key为每个元素的值,capaticy为哈希表元素的容量。

357801d7e27342f283f999b121998957.png

映射过程:
元素8   key=8  8%10=8 映射在数组下标为第8的位置上

元素7   映射在下标为7的位置上

  1. 直接定值法:(关键数范围集中,量不大的时候)关键字和存储位置是一一对应,不存在哈希冲突
  2. 除留余数法:(关键字很分散,量很大)关键字和存储位置是一对多的关系,存在哈希冲突

哈希冲突

对于两个数据元素的关键字 eq?k_%7Bi%7D 和 eq?k_j%7B%7D (i != j),有 eq?k_%7Bi%7D != eq?k_j%7B%7D ,但有:Hash(eq?k_%7Bi%7D) == Hash(eq?k_j%7B%7D),即:不同关键字通过相同哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

例如上述的举例:
key的值为 18  15的时候

hashi计算的方法得出 需要映射到8 和5的位置上,但是8 和5的位置已经存在·其它值。这就产生了冲突


哈希冲突的解决

1.开放定址法(闭散列)

a:线性探测

        如果发生冲突,就往后一次一步寻找为空的位置。

b:二次探测

        发生冲突,每次往后走俩步,寻找没有冲突的位置。

线性探测的缺点:容易产生成片的冲突

二次探测的缺点:虽然解决了容易产生成片冲突,但是空间利用率也不高

2.开散列

又称开链法、哈希桶,计算如果产生了哈希冲突,就以链表的形式将冲突的值链接起来。

dee00f98d1f640ae8b8c56f3fb446b5e.png


哈希表的闭散列实现

闭散列哈希中的,每个位置不仅需要存储数据,还需要标注状态,方便查找删除。

enum State { EMPTY, EXIST, DELETE };

标记状态的意义?

在一个哈希表中,如果需要存放,我们会计算出key映射位置。如果key映射位置被占走,会往后继续寻找到删除/空的位置放置。

在查找时,在映射位置找不到时,需要往后寻找,我们不可能一直往后寻找O(N).,那就失去哈希表的价值,当我们遇到存在/删除位置时继续往后寻找,直到找到空位置,说明没有该元素。

因此在存储时,每个位置都必须有状态和数据

		struct Elem{pair<K, V> _val;State _state;};

框架

哈希表还需要维持容量的问题。因此需要_size表示实际存放,来维持负载因子

template<class K,class V> //k—v结构
class HashTable	
{
public:
//...
private:vector<Elem> _ht;size_t _size;		//实际存储size_t _totalSize;  // 哈希表中的所有元素:有效和已删除, 扩容时候要用到
};


哈希表的插入

  1. 根据K查找是为空,是则返回false
  2. 计算负载因子,是否需要扩容
  3. 插入新元素
  4. 更新位置状态,有效数目增加

扩容的方法

  • 开新的哈希表(默认空间为原来的2倍)
  • 遍历旧表,调用哈希表的插入。
  • 交换俩个表。

		// 插入bool Insert(const pair<K, V>& val){if (Find(val.first) != -1)return false;//负载因子为7时,扩容if ((_size * 10) / _ht.size() == 7){size_t newsize = _ht.size() * 2;HashTable<K, V>newht;newht._ht.resize(newsize);//遍历旧表for (size_t i = 0; i < _ht.size(); i++){if (_ht[i]._state == EXIST)newht.Insert(_ht[i]._val);}_ht.swap(newht._ht);}//出入新元素size_t hashi = HashFunc(val.first);while (_ht[hashi]._state == EXIST){++hashi;hashi %= _ht.size();}_ht[hashi]._val = val;_ht[hashi]._state = EXIST;++_size;++_totalSize;return true;}

哈希表的查找

通过hash函数映射到hashi,往后一直比对,遇到存在比对,不是要找的val就往后需要,遇到删除也往后对比。直到遇到空返回。

		// 查找size_t Find(const K& key){size_t hashi = HashFunc(key);while (_ht[hashi]._state != EMPTY){if (_ht[hashi]._state == EXIST&& _ht[hashi]._val.first == key){return hashi;}++hashi;hashi %= _ht.size();}return -1;}


哈希表的删除

删除是比较简单,是一种伪删除,不需要对数据清楚,只需要修改状态为删除,减少有效个数

  1. 调用find,没有则返回flase
  2. 修改为状态
  3. 减少个数
		bool Erase(const K& key){int hashi = Find(key);if (hashi == -1)	return false;_ht[hashi]._state = DELETE;--_size;return true;}

这三部分就是闭散列的主体结构。需要维持负载因子和状态。

Gitee: 闭散列哈希代码


哈希桶

开散列哈希表就不要需要状态的使用,是由一个链表的数组构成。

就是一排一排的桶。想要查找数据,只需要映射位置,在桶中寻找,是O(1)的放法.

特别极端情况下可能达到O(N)。

框架

底层可以依赖单链表,只需要简单的头插即可。

链表的结点:需要包含下一个位置的指针,需要包含pair键值对

	template<class K, class V>struct HashNode{pair<K, V>_kv;HashNode<K, V>* _next;//构造HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}};

同样需要记录表中有效元素的个数,但是一般情况下,负载因子在80%-90%效率最大

我们为了简单实现,在100%时才扩容。 

template<class K, class V>
class HashTable
{
public://...
private:vector<Node*> _table; //哈希表size_t _n = 0; //哈希表中的有效元素个数
};

哈希桶的插入

  1. 检查是否为已经存在的Key
  2. 检查负载因子,为1就扩容
  3. 往hashi位置头插插入
  4. 修改个数

扩容的方法

  1. rasize一个二倍数量的原表
  2. 遍历旧表,将一个元素从链表的头取下,插入到新表中的hashi位置上。注意保存下一个位置!
  3. 交换俩张表

		bool Inset(const pair<K, V>& kv){if (Find(kv.first)){return false;}hash hf;//扩容if (_tables.size() == _n){size_t newsize = _tables.size() * 2;vector<Node*> newtable;newtable.resize(newsize, nullptr);for (size_t i = 0; i < (_tables.size()); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hf(cur->_kv.first % newtable.size());//头插cur->_next = newtable[hashi];newtable[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newtable);}size_t hashi = hf(kv.first) % _tables.size();Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;_n++;return true;}

哈希桶的查找

  • 计算hashi
  • 遍历单链表
  • 为空则返回flase
		Node* Find(const K& key){hash fc;size_t hashi = fc(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;cur=cur->_next;}return nullptr;}

哈希桶的删除

删除需要主要是删除的中间结点还是首结点

需要保存父亲结点

和单链表的删除基本一致

		bool Erase(const K& key){hash fc;size_t hashi = fc(key) % _tables.size();Node* cur = _tables[hashi];Node* prev = nullptr;while (cur){//找到了if (cur->_kv.first == key){//头删if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true;}}return false;}

Gitee: 开散列哈希桶代码


关于仿函数HashFunc

仿函数是一种回调,可以定义出函数对象。

是对不同类型转化为key,之前在位图就已经介绍,本文用的是BDK算法

对于string字符串类型会有存在冲突,但是可以通过不同的算法映射到不到的位置上,通过几个值的比对能减少失误的概率。

template<class K>
struct DefaultHash
{size_t operator()(const K& key){return (size_t)key;}
};//特化 针对字符串
template<>
struct DefaultHash<string>
{size_t operator()(const string& key){//BKDRsize_t hash = 0;for (auto ch : key){hash = hash * 131 + ch;}return hash;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/465393.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

15 ABC基于状态机的按键消抖原理与状态转移图

1. 基于状态机的按键消抖 1.1 什么是按键&#xff1f; 从按键结构图10-1可知&#xff0c;按键按下时&#xff0c;接点&#xff08;端子&#xff09;与导线接通&#xff0c;松开时&#xff0c;由于弹簧的反作用力&#xff0c;接点&#xff08;端子&#xff09;与导线断开。 从…

【教3妹学编程-算法题】执行操作后的最大分割数量

2哥 : 3妹&#xff0c;今年过年收到压岁钱了没呢。 3妹&#xff1a;切&#xff0c;我都多大了啊&#xff0c;肯定没收了啊 2哥 : 俺也一样&#xff0c;不仅没收到&#xff0c;小侄子小外甥都得给&#xff0c;还倒贴好几千 3妹&#xff1a;哈哈哈哈&#xff0c;2叔叔&#xff0c…

乐观锁,CAS,ABA问题,synchronized锁升级过程

常见的锁策略 乐观锁 vs 悲观锁 乐观锁&#xff1a;乐观锁假设认为数据一般情况下不会产生并发冲突&#xff0c;所以在数据进行提交更新的时候&#xff0c;才会正式对数据是否产生并发冲突进行检测&#xff0c;如果发现并发冲突了&#xff0c;则返回用户错误的信息&#xff0c…

bcdedit /store 填什么,Windows11的BCD文件在哪里?

Windows11为EFI引导&#xff0c;bcd文件在 EFI分区的 \EFI\Microsoft\Boot\BCD 可以选择挂载EFI分区&#xff0c;或者使用如下方式&#xff0c;该路径可充当盘符使用。 例 bcdedit /store Z:\EFI\Microsoft\Boot\BCD /enum /v

javaweb物业管理系统jsp项目

文章目录 物业管理系统一、系统演示二、项目介绍三、系统部分功能截图四、部分代码展示五、底部获取项目源码&#xff08;9.9&#xffe5;带走&#xff09; 物业管理系统 可用作javaweb项目、servlet项目、jsp项目的项目设计 一、系统演示 物业管理系统 二、项目介绍 语言&a…

GEE数据集——巴西年度土地覆被和利用地图

巴西年度土地覆被和利用地图 巴西年度土地利用和土地覆被制图项目是一个由生物群落、土地利用、遥感、地理信息系统和计算机科学专家组成的合作网络&#xff0c;依靠谷歌地球引擎平台及其云处理和自动分类功能生成巴西年度土地利用和土地覆被时间序列。MapBiomas 项目--是一项多…

Vue源码系列讲解——模板编译篇【一】(综述)

目录 1. 前言 2. 什么是模板编译 3. 整体渲染流程 4. 模板编译内部流程 4.1 抽象语法树AST 4.2 具体流程 5. 总结 1. 前言 在前几篇文章中&#xff0c;我们介绍了Vue中的虚拟DOM以及虚拟DOM的patch(DOM-Diff)过程&#xff0c;而虚拟DOM存在的必要条件是得先有VNode&…

【蓝桥杯Python】试题 算法训练 P0804

资源限制 内存限制&#xff1a;256.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 编写一个函数void strcompress(char *s)&#xff0c;输入一个字符串&#xff08;只包含小写字母和空格&#xff0c;且长度小于1000&…

sheng的学习笔记-网络爬虫scrapy框架

基础知识&#xff1a; scrapy介绍 何为框架&#xff0c;就相当于一个封装了很多功能的结构体&#xff0c;它帮我们把主要的结构给搭建好了&#xff0c;我们只需往骨架里添加内容就行。scrapy框架是一个为了爬取网站数据&#xff0c;提取数据的框架&#xff0c;我们熟知爬虫总…

Modern C++ 内存篇2 - 关于relocation的思考

在上一节《Modern C 内存篇1 - std::allocator VS pmr-CSDN博客》我们详细讨论了关于如何判断用不用memmove优化的代码&#xff0c;结论可以总结为&#xff1a; 只有_Tp是trivial 且 用std::allocator 才会调用memmove。 所有case如下表格所示&#xff1a; No_Tpallocator typ…

2024刘谦春晚第二个扑克牌魔术

前言 就是刚才看春晚感觉这个很神奇&#xff0c;虽然第一个咱模仿不过来&#xff0c;第二个全国人民这么多人&#xff0c;包括全场观众都有成功&#xff0c;这肯定是不需要什么技术&#xff0c;那我觉得这个肯定就是数学了&#xff0c;于是我就胡乱分析一通。 正文 首先准备…

为什么无法正常访问TikTok?该使用跨境专线吗?

TikTok作为全球范围内备受欢迎的社交媒体平台&#xff0c;吸引了数以亿计的用户。然而&#xff0c;有时候用户可能会遇到无法正常访问TikTok的问题&#xff0c;这可能涉及到多方面的因素。本文将深入探讨为什么可能无法正常访问TikTok&#xff0c;并考虑是否使用 TikTok跨境专线…