博主简介
AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;
原创自研系列,paper级别创新, 2024年计算机视觉顶会创新点
《YOLOv8原创自研》
《YOLOv5原创自研》
《YOLOv7原创自研》
23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高
《YOLOv8魔术师》
《YOLOv7魔术师》
《YOLOv5/YOLOv7魔术师》
《RT-DETR魔术师》
应用系列篇:
《YOLO小目标检测》
《深度学习工业缺陷检测》
《YOLOv8-Pose关键点检测》
1.YOLO目标检测书籍介绍
目录:
内容简介:
本书主要介绍基于视觉的YOLO框架的技术原理和代码实现,并讲解目标检测领域中的诸多基础概念和基本原理,在YOLO框架的基础上介绍流行目标检测框架。本书分为4个部分,共13章。第1部分介绍目标检测领域的发展简史、主流的目标检测框架和该领域常用的数据集。第2部分详细讲解从YOLOv1到YOLOv4这四代YOLO框架的网络结构、检测原理和训练策略,以及搭建和训练的YOLO框架的代码实现。第3部分介绍两个较新的YOLO框架——YOLOX和YOLOv7,着重讲解其设计理念、网络结构和检测原理。第4部分介绍DETR、YOLOF和FCOS在内的流行目标检测框架和相应的代码实现。本书侧重目标检测的基础知识,包含丰富的实践内容,是目标检测领域的入门书,适合对目标检测领域感兴趣的初学者、算法工程师、软件工程师等人员学习和阅读。
适读人群 :本书适合对YOLO目标检测感兴趣、了解深度学习相关概念的算法工程师、软件工程师等人员阅读。
1. 全面:涵盖6个常用目标检测框架(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOX、YOLOv7)的发展状况、技术原理和代码实现。
2. 流行:涵盖3个流行目标检测框架(DETR、YOLOF 和 FCOS)的网络结构、技术原理和代码实现。
3. 复现:每个代码实现章节均配备完整的YOLO项目代码,帮助读者轻松复现、优化和调试项目代码。
4. 丰富:附赠丰富的目标检测项目代码和全书彩图文件,帮助读者更直观地理解YOLO目标检测。
购书链接:https://item.jd.com/14301588.html
2.如何参与抽奖活动
参与方式:添加博主微信(文末),成功参与抽奖活动、
第一次做送书活动,先送两本预热一下
活动截止时间:2024-02-18 18:18