linux信号机制[一]

目录

信号量

时序问题

原子性

什么是信号

 信号如何产生

引入

信号的处理方法

常见信号

如何理解组合键变成信号呢? 

如何理解信号被进程保存以及信号发送的本质?

为什么要有信号

信号怎么用?

样例代码

core文件有什么用呢?

验证core的状态

 一般生产环境为什么要关闭core

kill:结束进程

软件条件产生的信号 

硬件产生的信号

如何理解除0错误

如何理解野指针和越界问题


由于临界区,和临界资源的存在,在进入临界区访问呢临界资源的时候,必须要先申请一个信号量。通知临界区,提前预定访问临界资源。对临界资源访问的预定。只有我这个进程访问完成之后其他的资源才可以访问呢。

信号量
时序问题

信号量本质上是一个计数器。

假有一个变量n = 6需要多次--,多个进程执行

cpu执行指令的时候,将内存中的数据加载到cpu内部的寄存器中(读指令),之后(n--)分析执行命令,然后将cpu修改之后的数据写回内存。进程在执行的时候任何时候都可能被切换。寄存器只有一套,被所有执行流共享,但是寄存器数据是单独的,属于执行流的上下文。

假设一个进程刚对n执行--到5然后结果没写入,被切换了,然后其他的进程对n--到0,写回去结果,此刻之前的进程继续执行,将5写回去,这回导致之前的进程工作白费。这就引出了时序问题。这种执行是不安全的。 

原子性

为了保证避免时序问题,就需要保证,每个临界资源,被访问,只能一个进程执行完,另一个进程继续执行。这种就叫做原子性。

什么是信号

首先信号和信号量是2个东西。linux信号本质上是一中通知机制,用户或者操作系统通过发送一定的信号。通知进程,某些事件已经发生,你可以在进行后续处理。结合进程,我们可以得出以下结论:

a.进程必须有识别进程的能力

b.为什么能识别信号呢?通过程序员的逻辑处理

c.信号到来是随机的,进程可能在忙自己的事情,信号的后续处理,可能不是立即处理的。(就像打游戏时候外卖送过来)。

d.信号会被临时记录下对应的信号,方便后续的处理。

e.在什么时候处理呢?合适的时候

 f.一般而言信号的产生和进程都是异步的。

 信号如何产生
引入

当一个程序运行的时候,我们在键盘上按ctrl + c本质上就是通过键盘组合向目标发送2号信号。让程序结束。

信号的处理方法

a.默认  每个信号都有默认的信号处理方法。(进程自带的)

b.忽略(也是信号的一种处理方式)

c.自定义(捕捉信号,自己处理)

常见信号
kill -l 此命令查看所有信号

 1-31为普通信号,没有0号32,33号信号。34-64是实时信号。我们一般只关心1-31.

我们使用 man 7 signal 查看

里面有一个action 默认处理行为。

如何理解组合键变成信号呢? 

键盘的工作方式是通过中断方式进行的,可以识别组合键。操作系统解释组合键,查找进程列表找到相关的进程,修改内部数据结构。

如何理解信号被进程保存以及信号发送的本质?

为了识别信号,进程必须保存信号相关的信号数据结构。怎么表示呢?位图。pcb内部保存了信号位图字段。

信号位图是在task_struct里面保存的。发送信号的时候操作系统修改pcb内部位图字段。也就是说发信号,本质上就是修改操作系统内部指定的位图结构,完成发送信号的过程。

为什么要有信号

a.是什么信号

b.是否产生

信号怎么用?

介绍一个函数

#include <signal.h>typedef void (*sighandler_t)(int);sighandler_t signal(int signum, sighandler_t handler);

这个函数可以对信号进行自定义。参数1是对哪个信号进行捕捉,信号的类型,参数二是函数指针,回调函数。通过回调的方式,修改信号的处理方法。

样例代码
#include<iostream>
#include<signal.h>
#include<sys/types.h>
#include<unistd.h>
using namespace std;//信号捕捉
void catchsig(int sigum)
{cout<<"捕捉到了信号:"<<sigum<<"pid:"<<"getpid()"<<endl;
}int main()
{//SIGINT是二号信号,在用户输入ctrl信号时发出。用于通知前台结束进程signal(SIGINT,catchsig);//也可以直接写数字名字都可以,第一个参数是信号处理选项//信号的处理方法一般只有一个signal(SIGQUIT,catchsig);//二号和三号信号捕捉。//signal仅仅是修改进程对特定信号处理方法,而不是直接调用处理方法while(1){//加循环是为了给信号产生留下时间cout<<"我是一个进程在运行。。。pid:"<<getpid()<<endl;sleep(1);}return 0;
}

在之前我们查看信号的时候action里面有2个选项term 和 core

那么core是什么呢?core全程core dump核心转储标志,表示是否发送核心转储。一般而言核心转储是被关闭的。

首先解释什么是Core Dump。当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部保存到磁 盘上,文件名通常是core,这叫做Core Dump。进程异常终止通常是因为有Bug,比如非法内存访问导致段错误, 事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许 产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中)。默认是不允许产生core文件的, 因为core文件中可能包含用户密码等敏感信息,不安全。在开发调试阶段可以用ulimit命令改变这个限制,允许 产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K:

ulimit -a

 这个命令可以查看服务器状态,里面会显示core的状态。

可以使用ulimit  -c 1024命令打开core状态,并指定core为1024字节。如果我们使用带有 core的信号的时候例如8号信号结束程序,程序会结束时带有core.并且生成core文件,以自己的pid为结尾。

core文件有什么用呢?

当进程出现异常的时候,由系统将当前进程内存中的核心数据dump到磁盘中。也就是core文件。

那么为什么要转储呢?——调试。

在使用调试生成文件之后使用gdb进行调试 core-file加载定位文件。可以直接定位到出错位置。

验证core的状态

    int status =0;waitpid(id,&status,0);cout<<"父进程"<<getppid()<<"子进程"<<getpid()<<" 退出码:"<< status&0x7f<<"是否 core"<<(status>>7&1)<<endl;
 一般生产环境为什么要关闭core

生产环境内存空间有限,因为有时候服务可能不可抗力导致一直重启,一直生产core文件,极有可能塞满内存空间出问题。

信号接口

kill:结束进程

#include <signal.h>

int kill(pid_t pid, int signo);

向指定进程发送指定信号。

int raise(int signo); 这两个函数都是成功返回0,错误返回-1

自己给自己发送自己定义的信号。

#include

void abort(void);

就像exit函数一样,abort函数总是会成功的,所以没有返回值。  自己终止自己。想当于自己给自己发6号信号

系统调用本质上也就是操作系统,修改对应的数据结构。

软件条件产生的信号 

管道——独端不读,而且一直写,会发生什么?系统会自动终止通过发送信号的方式SIGPIPE.

include <unistd.h>

unsigned int alarm(unsigned int seconds); 调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号, 该信号的默认处理动 作是终止当前进程。

#include<iostream>
#include<sys/types.h>
#include<unistd.h>
#include<sys/wait.h>
using namespace std;
#include<signal.h>
#include<string>int main()
{alarm(1);int count =0;while(1){cout<<"cout :"<<count++<<endl;}}

 这个代码是计算一秒钟count++了多少次

虽然这个数很大但是,相比于cpu的性能其实很拉跨,这是为什么呢?

cout大量IO很消耗时间,还有网络传输发送,导致非常慢。

闹钟有一个问题,一旦使用过就会自动移除。那么闹钟如果想要周期性的使用怎么办呢?

就需要信号捕获之后在处理方法中重新设定闹钟。

硬件产生的信号

硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。例如当前进程执行了除 以0的指令,CPU的运算单元会产生异常,内核将这个异常解释 为SIGFPE信号发送给进程。再比如当前进程访问了非 法内存地址,,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。

如何理解除0错误

数据在cpu上进行计,cpu上由寄存器,其中有一种状态寄存器。有对应的状态标记位,如果发生错误,os会自动进行计算之后的检测。这个状态是由cpu执行的,由操作系统检测。而出现硬件异常一般会打印消息然后退出。但是不退出也不是不行,不过即使不退出也没什么用。信号捕捉之后如果发生死循环这是,此刻的寄存器还是处于错误状态,没有进行复位。

如何理解野指针和越界问题

都必须通过地址,找到目标位置,语言上的地址都是虚拟地址,将语言上的虚拟地址转换成物理地址。页表+MMU(硬件),找到地址。而野指针,和越界,在mmu转化的时候一定会报错。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/466864.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI论文速读 |【综述】城市基础模型回顾与展望——迈向城市通用智能

最近申请了一个公众号&#xff0c;名字为“时空探索之旅”。之后会同步将知乎有关时空和时序的论文总结和论文解读发布在公众号&#xff0c;更方便大家查看与阅读。欢迎大家关注&#xff0c;也欢迎多多提建议。 &#x1f31f;【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘…

用Python来实现2024年春晚刘谦魔术

简介 这是新春的第一篇&#xff0c;今天早上睡到了自然醒&#xff0c;打开手机刷视频就被刘谦的魔术所吸引&#xff0c;忍不住用编程去模拟一下这个过程。 首先&#xff0c;声明的一点&#xff0c;大年初一不学习&#xff0c;所以这其中涉及的数学原理约瑟夫环大家可以找找其…

侧信道攻击是什么

侧信道攻击是什么? 侧信道攻击是一种利用系统的物理实现或实现的特定属性来获取信息的攻击方式。这些攻击利用了系统在执行特定操作时产生的信息泄漏&#xff0c;而不是直接攻击系统的计算或加密算法。侧信道攻击通常利用系统的功耗、电磁辐射、时间延迟等物理特性进行攻击&a…

【Java程序设计】【C00264】基于Springboot的原创歌曲分享平台(有论文)

基于Springboot的原创歌曲分享平台&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的原创歌曲分享平台 本系统分为平台功能模块、管理员功能模块以及用户功能模块。 平台功能模块&#xff1a;在平台首页可以查看首…

专业145+总分400+合肥工业大学833信号分析与处理综合考研经验电子信息通信,真题,大纲,参考书

今年专业课145总分400&#xff0c;我总结一下自己的专业课合肥工业大学833信号分析与处理和其他几门的复习经验。希望对大家复习有帮助。 我所用的教材是郑君里的《信号与系统》&#xff08;第三版&#xff09;和高西全、丁玉美的《数字信号处理》&#xff08;第四版&#xff…

百面嵌入式专栏(面试题)驱动开发面试题汇总 2.0

沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇我们将介绍驱动开发面试题 。 1、Linux系统的组成部分? Linux内核、Linux文件系统、Linux shell、Linux应用程序。 2、Linux内核的组成部分? (1)第一种分类方式:内存管理子系统、进程管理子系统、文件管理子系…

政安晨:在Jupyter中【示例演绎】Matplotlib的官方指南(二){Image tutorial}·{Python语言}

咱们接着上一篇&#xff0c;这次咱们讲使用Matplotlib绘制图像的简短尝试。 我的这个系列的上一篇文章在这里&#xff1a; 政安晨&#xff1a;在Jupyter中【示例演绎】Matplotlib的官方指南&#xff08;一&#xff09;{Pyplot tutorial}https://blog.csdn.net/snowdenkeke/ar…

分享89个jQuery特效,总有一款适合您

分享89个jQuery特效&#xff0c;总有一款适合您 89个jQuery特效下载链接&#xff1a;https://pan.baidu.com/s/1krmOd12n09u2vROfeEL2KQ?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理…

视觉开发板—K210自学笔记(六)

视觉开发板—K210 本期我们继续来遵循其他控制器的学习路线&#xff0c;在学习完GPIO的基本操作后&#xff0c;我们来学一个非常重要的UART串口通信。为什么说这个重要呢&#xff0c;通常来说我们在做一个稍微复杂的项目的时候K210作为主控的核心可能还有所欠缺&#xff0c;另…

STM32--SPI通信协议(3)SPI通信外设

前言 硬件SPI&#xff1a;通过硬件电路实现&#xff0c;所以硬件SPI速度更快&#xff0c;有专门的寄存器和 库函数 &#xff0c;使用起来更方便。 软件SPI&#xff1a;也称模拟SPI&#xff0c;通过程序控制IO口电平模拟SPI时序实现&#xff0c;需要程序不断控制IO电平翻转&am…

Springboot+vue的社区养老服务平台(有报告)。Javaee项目,springboot vue前后端分离项目

演示视频&#xff1a; Springbootvue的社区养老服务平台&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的社区养老服务平台&#xff0c;采用M&#xff08;model&…

Java语法学习反射

Java语法学习反射 大纲 基本介绍class的介绍 具体案例 1. 基本介绍 流程图&#xff08;程序在计算机的阶段&#xff09; 反射的主要的类 这个提高效率不大 2. class的介绍 对于第三点&#xff1a;首先类只会加载一次&#xff0c;得到的class的对象&#xff0c;也只有一…