详解结构体内存对齐及结构体如何实现位段~

目录

 ​编辑

一:结构体内存对齐

1.1对齐规则

1.2.为什么存在内存对齐

1.3修改默认对齐数

二.结构体实现位段

2.1什么是位段

2.2位段的内存分配

2.3位段的跨平台问题

2.4位段的应用

2.5位段使用的注意事项

 三.完结散花



 

                                            悟已往之不谏,知来者犹可追                                                        

创作不易,宝子们!如果这篇文章对你们有帮助的话,别忘了给个免费的赞哟~ 

一:结构体内存对齐

1.1对齐规则

1.结构体的第一个成员对齐到和结构体变量起始位置偏移量为零的地址处~

2.其他变量要对齐到某个数字(对齐数) 的整数倍的地址处~

对齐数=编译器默认的一个对齐数与该成员变量较小值~

——VS中默认的对齐数是8~

——Linux中gcc没有默认的对齐数,成员变量的大小就是对齐数~

3.结构体总大小位最大对齐数(每个结构体成员变量都有自己对应的对齐数,取他们当中的最大值)的整数倍。~

4.如果嵌套了结构体的情况,嵌套的结构体变量总大小为自己成员变量的最大对齐数的整数倍,结构体的总大小就是所有成员变量的最大对齐数(含嵌套结构体中的成员变量中的对齐数)的整数倍~

举个栗子啦~

struct S1
{
char c1;
int i;
char c2;
};
printf("%d\n", sizeof(struct S1));

 你们猜一下该结构体变量的大小是多少呢~

接下来我们就根据上面讲的内存对齐规则来计算一下啦~

注意:以下测试均是在VS中!(其他编译器上可能会有不同的结果!)

让我们看一下运行结果啦~

让我们再看一看下面这个例子~

struct S2
{
char c1;
char c2;
int i;
};
printf("%d\n", sizeof(struct S2));

 运行效果也是这样呢~

1.2.为什么存在内存对齐

1. 平台原因(移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。
3.总体来说:结构体的内存对⻬是拿空间来换取时间的做法。


那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到:

根据以上俩个栗子我们可以很容易的知道:


让占⽤空间⼩的成员尽量集中在⼀起就行啦~ 
 

1.3修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对⻬数。

如下操作就行啦~

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{
//输出的结果是什么?
printf("%d\n", sizeof(struct S));
return 0;
}

结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数啦~
 

二.结构体实现位段

2.1什么是位段

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。
2. 位段的成员名后边有⼀个冒号和⼀个数字

举个栗子啦~

struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};

 A就是⼀个位段类型。
那位段A所占内存的大小是多少?

2.2位段的内存分配

1. 位段的成员可以是 int 、unsigned int  、signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段

struct S
{
char a:3;
char b:4;
char c:5;
char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

 

2.3位段的跨平台问题

1. int位段被当成有符号数还是⽆符号数是不确定的。
2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会
出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃
剩余的位还是利⽤,这是不确定的。
总结:
跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

 

2.4位段的应用

下图是⽹络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥
使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报⼤⼩也会较⼩⼀些,对⽹络
的畅通是有帮助的。


2.5位段使用的注意事项

位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员

struct A
{
int _a : 2;
int _b : 5;
int _c : 10;
int _d : 30;
};
int main()
{
struct A sa = {0};
scanf("%d", &sa._b);//这是错误的
//正确的⽰范
int b = 0;
scanf("%d", &b);
sa._b = b;
return 0;
}


 

 三.完结散花

好了,这期的分享到这里就结束了~

如果这篇博客对你有帮助的话,可以用你们的小手指点一个免费的赞并收藏起来哟~

如果期待博主下期内容的话,可以点点关注,避免找不到我了呢~

我们下期不见不散~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/468294.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【蓝桥杯冲冲冲】[CEOI2015 Day2] 世界冰球锦标赛

蓝桥杯备赛 | 洛谷做题打卡day32 文章目录 蓝桥杯备赛 | 洛谷做题打卡day32题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示样例解释 题解代码我的一些话 [CEOI2015 Day2] 世界冰球锦标赛 题目描述 译自 CEOI2015 Day2 T1「Ice Hockey World Championship」 今年的…

2023年全国职业院校技能大赛软件测试赛题第4套

2023年全国职业院校技能大赛 软件测试赛题第4套 赛项名称&#xff1a; 软件测试 英文名称&#xff1a; Software Testing 赛项编号&#xff1a; GZ034 归属产业&#xff1a; 电子与信息大类 …

(三十七)大数据实战——Solr服务的部署安装

前言 Solr是一个基于Apache Lucene的开源搜索平台&#xff0c;它提供了强大的全文搜索、分布式搜索和数据分析功能。Solr 可以用于构建高性能的搜索应用程序&#xff0c;支持从海量数据中快速检索和分析信息。Solr 使用倒排索引和先进的搜索算法&#xff0c;可实现快速而准确的…

物联网技术讲解:蓝牙无线通讯技术

相信大家对蓝牙肯定不会陌生&#xff0c;但蓝牙是怎么来的&#xff1f;为什么叫蓝牙不叫黄牙呢&#xff1f;它是如何发展至今&#xff1f;以及它与物联网未来的发展趋势是什么&#xff0c;今天我们一起来深度的聊一聊。蓝牙无处不在&#xff1a;扬声器、无线耳机、汽车、可穿戴…

【Linux学习】生产者-消费者模型

目录 22.1 什么是生产者-消费者模型 22.2 为什么要用生产者-消费者模型? 22.3 生产者-消费者模型的特点 22.4 BlockingQueue实现生产者-消费者模型 22.4.1 实现阻塞队列BlockQueue 1) 添加一个容器来存放数据 2)加入判断Blocking Queue情况的成员函数 3)实现push和pop方法 4)完…

微软Bing地图获取栅格瓦片或图块

bing地图获取栅格瓦片或图块 获取元数据 https://dev.virtualearth.net/REST/v1/Imagery/Metadata/{imagerySet}?key{BingMapsKey}imagerySet&#xff1a;要为其请求元数据的影像类型。官方说中国支持以下两个值&#xff1a;RoadOnDemand、VibrantDark BingMapsKey&#xff…

快速的搭建一个临时的 Linux 系统instantbox

centos 安装 docker-CSDN博客 首先要有docker && docker-compose mkdir instantbox && cd $_ bash <(curl -sSL https://raw.githubusercontent.com/instantbox/instantbox/master/init.sh) docker-compose up -d instantbox: instantbox 可以让你快速的搭…

【教程】MySQL数据库学习笔记(三)——数据定义语言DDL(持续更新)

写在前面&#xff1a; 如果文章对你有帮助&#xff0c;记得点赞关注加收藏一波&#xff0c;利于以后需要的时候复习&#xff0c;多谢支持&#xff01; 【MySQL数据库学习】系列文章 第一章 《认识与环境搭建》 第二章 《数据类型》 第三章 《数据定义语言DDL》 文章目录 【MyS…

Zig、C、Rust的Pk1

Zig、C、Rust的Pk1 github.com上看到“A basic comparitive analysis of C, C, Rust, and Zig.”&#xff1a;https://github.com/CoalNova/BasicCompare/tree/main 里边的代码是9个月之前的&#xff0c;用现在的zig 0.11.0 及0.12-dev都无法通过编译(具体为&#xff1a;zig-w…

ADSelfService Plus发布离线MFA功能,强化远程工作安全性

ManageEngine ADSelfService Plus推出离线多因素身份验证&#xff0c;提升远程工作安全性确保通过先进的验证方法对企业数据进行授权访问&#xff0c;无论时间、地点或连接问题如何允许远程用户安全进行身份验证&#xff0c;即使未连接到认证服务器或互联网使用高度安全的基于T…

【蓝桥杯】灭鼠先锋

一.题目描述 二.解题思路 博弈论&#xff1a; 只能转移到必胜态的&#xff0c;均为必败态。 可以转移到必败态的&#xff0c;均为必胜肽。 最优的策略是&#xff0c;下一步一定是必败态。 #include<iostream> #include<map> using namespace std;map<string,bo…

分享85个CSS3特效,总有一款适合您

分享85个CSS3特效&#xff0c;总有一款适合您 85个CSS3特效下载链接&#xff1a;https://pan.baidu.com/s/1J4c6VTH3I6p7FxCp0f3_Ug?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理更不…