备战蓝桥杯---图论之最短路Bellman-Ford算法及优化

目录

上次我们讲到复杂度为(n+m)logm(m为边,n为点)的迪杰斯特拉算法,其中有一个明显的不足就是它无法解决包含负权边的图。

于是我们引进Bellman-Ford算法。

核心:枚举所有的点,能松弛就松弛,直到所有点都不能松弛。

具体过程:

我们在外循环循环n-1(n为点数),然后在内循环上枚举所有的边,能松弛就松弛。

到这里,肯定有许多人对它正确性怀疑,其实,我们可以知道,在外循环循环k轮后,k步以内可以到的点的值<=从源点在k步以内能走到的最优解(有点类似广搜)。

具体来说,当k=2时,2步以内可以到的点的值<=2步内从源点走到该点的最小距离。(<=的原因在于枚举边的时候可能会被刚刚更新的点在被更新一遍)


上次我们讲到复杂度为(n+m)logm(m为边,n为点)的迪杰斯特拉算法,其中有一个明显的不足就是它无法解决包含负权边的图。

于是我们引进Bellman-Ford算法。

核心:枚举所有的点,能松弛就松弛,直到所有点都不能松弛。

具体过程:

我们在外循环循环n-1(n为点数),然后在内循环上枚举所有的边,能松弛就松弛。

到这里,肯定有许多人对它正确性怀疑其实,我们可以知道,在外循环循环k轮后,k步以内可以到的点的值<=从源点在k步以内能走到的最优解(有点类似广搜)。

具体来说,当k=2时,2步以内可以到的点的值<=2步内从源点走到该点的最小距离。(<=的原因在于枚举边的时候可能会被刚刚更新的点在被更新一遍)

因此,在n-1轮后,因为每一个点最多被走一次(除非是负环,等下讨论),因此,利用上述结论,我们可以得出在外循环循环n-1轮后,所有的点的值为从源点出发走到的最优解。

下面我们讨论一下负环,其实,如果出现负环,最短路就应该为负无穷,我们为了判断负环,只要比较更新次数有无<=n-1即可。

因为这过于暴力,复杂度为o(n*m),基本一用就寄,于是我们考虑一下优化

我们不妨思考一个问题(这也是优化的关键)

一个点在什么情况下可以优化?

显然,只有到它的前一个点它的值优化改变后,那个点才可能被优化因为边权是不变的,而前一个点它的值无法被优化时,dis[a]=map[a][b]+dis[b],相当于dis[b]不变,那么dis[a]肯定也不变。

在知道这个后,我们让dis[源点]=0,其他为极大值。

我们对于边的枚举,只要枚举上一次被更新的点的边就可以了。

我们用队列实现(即SPFA算法,复杂度为o(k*m)(k为每一个点入队的平均次数)

还是这一题,我们用这个方法实现一下。

下面是AC代码:

#include<bits/stdc++.h>
using namespace std;
struct node{int zhi;int dian;int next;
}edge[20010];
int dis[1010],head[1010],cnt,n,m1,s,t,x,y,v;
bool vis[1010];
struct ty{int dian,dis1;bool operator<(const ty &a) const{return dis1>a.dis1;}
};
void merge(int x,int y,int v){edge[++cnt].zhi=v;edge[cnt].dian=y;edge[cnt].next=head[x];head[x]=cnt;
}
priority_queue<ty> q;
queue<int> q1;
int dij(int s,int t){q.push({s,0});while(!q.empty()){ty ck=q.top();q.pop();if(vis[ck.dian]==1) continue;vis[ck.dian]=1;for(int i=head[ck.dian];i!=-1;i=edge[i].next){int i1=edge[i].dian;if(vis[i1]==1) continue;if(dis[i1]>dis[ck.dian]+edge[i].zhi){dis[i1]=dis[ck.dian]+edge[i].zhi;q.push({i1,dis[i1]});}}}if(dis[t]>=0x3f3f3f3f) return -1;else return dis[t];
}
int spfa(int s,int t){q1.push(s);while(!q1.empty()){int hh=q1.front();vis[hh]=0;q1.pop();for(int i=head[hh];i!=-1;i=edge[i].next){int i1=edge[i].dian;if(dis[i1]>dis[hh]+edge[i].zhi){dis[i1]=dis[hh]+edge[i].zhi;if(vis[i1]==0){vis[i1]=1;q1.push(i1);}}}}if(dis[t]>=0x3f3f3f3f) return -1;else return dis[t];
}
int main(){cin>>n>>m1>>s>>t;memset(head,-1,sizeof(head));for(int i=1;i<=m1;i++){scanf("%d%d%d",&x,&y,&v);merge(x,y,v);merge(y,x,v);}memset(dis,0x3f,sizeof(dis));dis[s]=0;cout<<spfa(s,t);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/470706.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AIGC】Stable Diffusion的生成参数入门

Stable Diffusion 的生成参数是用来控制图像生成过程的重要设置&#xff0c;下面是一些常见的生成参数及其详解 1、采样器&#xff0c;关于采样器的选择参照作者的上一篇文章 2、采样步数&#xff08;Sampling Steps&#xff09;是指在生成图像时模型执行的总步数&#xff0c…

Stable Diffusion系列(五):原理剖析——从文字到图片的神奇魔法(扩散篇)

文章目录 DDPM论文整体原理前向扩散过程反向扩散过程模型训练过程模型生成过程概率分布视角参数模型设置论文结果分析 要想完成SD中从文字到图片的操作&#xff0c;必须要做到两步&#xff0c;第一步是理解文字输入包含的语义&#xff0c;第二步是利用语义引导图片的生成。下面…

【剪辑必备】今天我教你如何手动去下载苹果官网4K预告片 完全免费

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;web开发者、设计师、技术分享博主 &#x1f40b; 希望大家多多支持一下, 我们一起学习和进步&#xff01;&#x1f604; &#x1f3c5; 如果文章对你有帮助的话&#xff0c;欢迎评论 &#x1f4ac;点赞&a…

Gemini 1.5 Pro揭秘:Google DeepMind新一代AI模型如何突破千万级别词汇限制?

Gemini 1.5 Pro 发布&#xff01; 这款模型凭借其超长的上下文处理能力脱颖而出&#xff0c;支持10M tokens。 它的多模态特性意味着&#xff0c;无论面对多么庞大复杂的内容&#xff0c;Gemini 1.5 Pro都能游刃有余地应对。 在AI的世界里&#xff0c;上下文的理解如同记忆的…

计算机设计大赛 深度学习YOLOv5车辆颜色识别检测 - python opencv

文章目录 1 前言2 实现效果3 CNN卷积神经网络4 Yolov56 数据集处理及模型训练5 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习YOLOv5车辆颜色识别检测 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0…

unity的重中之重:组件

检查器&#xff08;Hierarchy&#xff09;面板中的所有东西都是组件。日后多数工作都是和组件打交道&#xff0c;包括调参、自定义脚本组件。 文章目录 12 游戏的灵魂&#xff0c;脚本组件13 玩转脚本组件14 尽职的一生&#xff0c;了解组件的生命周期15 不能插队&#xff01;…

2023.2.6

#include<stdio.h> #include<string.h> //冒泡排序 void bubb(int arr[],int len) {for(int i1;i<len;i){for(int j0;j<len-i1;j){if(arr[j1]<arr[j]){int tarr[j];arr[j]arr[j1];arr[j1]t;}}} } //select排序 void select(int arr[],int len) {int min0;…

MySQL索引语法

目录 1、创建索引&#xff1a; 2、查看索引 3、删除索引 4、案例分析&#xff1a; 4.1、name是姓名字段&#xff0c;该字段的值可能会重复&#xff0c;为该字段创建索引 4.2、phone是手机号&#xff0c;手机号字段的值非空且唯一&#xff0c;为该字段创建索引 4.3、为pro…

蓝桥杯真题:纸张尺寸

import java.util.Scanner; // 1:无需package // 2: 类名必须Main, 不可修改public class Main {public static void main(String[] args) {Scanner scan new Scanner(System.in);//在此输入您的代码...String s scan.nextLine();char[] c s.toCharArray();char c1 c[1];in…

SpringBoot3 + Vue3 由浅入深的交互 基础交互教学

说明&#xff1a;这篇文章是适用于已经学过SpringBoot3和Vue3理论知识&#xff0c;但不会具体如何实操的过程的朋友&#xff0c;那么我将手把手从教大家从后端与前端交互的过程教学。 目录 一、创建一个SpringBoot3项目的和Vue3项目并进行配置 1.1后端配置: 1.1.1applicatio…

(15)Hive调优——数据倾斜的解决指南

目录 前言 一、什么是数据倾斜 二、发生数据倾斜的表现 2.1 MapReduce任务 2.2 Spark任务 三、如何定位发生数据倾斜的代码 四、发生数据倾斜的原因 3.1 key分布不均匀 3.1.1 某些key存在大量相同值 3.1.2 存在大量异常值或空值 3.2 业务数据本身的特性 3.3 SQL语句…

Django学习笔记教程全解析:初步学习Django模型,初识API,以及Django的后台管理系统(Django全解析,保姆级教程)

把时间用在思考上是最能节省时间的事情。——[美]卡曾斯 导言 写在前面 本文部分内容引用的是Django官方文档&#xff0c;对官方文档进行了解读和理解&#xff0c;对官方文档的部分注释内容进行了翻译&#xff0c;以方便大家的阅读和理解。 概述 在上一篇文章里&#xff0…