算法沉淀——优先级队列(堆)(leetcode真题剖析)

在这里插入图片描述

算法沉淀——优先级队列

  • 01.最后一块石头的重量
  • 02.数据流中的第 K 大元素
  • 03.前K个高频单词
  • 04.数据流的中位数

优先队列(Priority Queue)是一种抽象数据类型,它类似于队列(Queue),但是每个元素都有一个关联的优先级。在优先队列中,元素按照优先级从高到低(或从低到高)排列,高优先级的元素先出队。这种数据结构可以用堆(Heap)来实现。

堆是一种二叉树结构,有两种主要类型:最大堆和最小堆。在最大堆中,每个节点的值都大于或等于其子节点的值;而在最小堆中,每个节点的值都小于或等于其子节点的值。对于优先队列来说,最大堆常常用于实现。

在堆中,根节点的元素具有最高(或最低)优先级,而且这一性质对于整个堆中的每个节点都成立。这确保了当我们从堆中移除元素时,总是移除具有最高(或最低)优先级的元素。

优先队列的常见操作包括:

  • 插入(Insertion):将元素插入队列中。
  • 删除最大(或最小)元素:移除并返回队列中具有最高(或最低)优先级的元素。

堆的实现可以通过数组或链表等数据结构。在使用数组实现堆时,父节点和子节点之间的关系可以通过数组的索引关系来表示。在C++中,可以使用 std::priority_queue 来实现优先队列,它默认使用最大堆,也可以通过传递自定义比较函数来实现最小堆。

01.最后一块石头的重量

题目链接:https://leetcode.cn/problems/last-stone-weight/

有一堆石头,每块石头的重量都是正整数。

每一回合,从中选出两块 最重的 石头,然后将它们一起粉碎。假设石头的重量分别为 xy,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块石头。返回此石头的重量。如果没有石头剩下,就返回 0

示例:

输入:[2,7,4,1,8,1]
输出:1
解释:
先选出 7 和 8,得到 1,所以数组转换为 [2,4,1,1,1],
再选出 2 和 4,得到 2,所以数组转换为 [2,1,1,1],
接着是 2 和 1,得到 1,所以数组转换为 [1,1,1],
最后选出 1 和 1,得到 0,最终数组转换为 [1],这就是最后剩下那块石头的重量。 

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 1000

思路

我们可以每次拿出最大的两个相比较,有差值就将差值保留,相等就都粉碎,这样我们很容易想到使用堆去计算,因为这符合堆的特性,我们可以使用各语言库中的堆容器来计算。

  1. 创建最大堆(Max Heap): 通过 priority_queue<int> 创建一个默认为最大堆的优先队列,将给定的石头数组中的元素加入最大堆中。
  2. 迭代处理: 使用一个循环迭代处理,直到堆中剩余的元素个数小于等于1。
  3. 从堆中取出两个最大的元素,执行碎石操作: 每次取出堆中的两个最大元素(即石头的重量最大的两块),执行碎石操作,计算碎石后的重量,将结果加回堆中。
  4. 返回结果: 当循环结束时,堆中剩余的元素即为最后一块石头的重量,或者堆为空,返回相应的结果。

代码

class Solution {
public:int lastStoneWeight(vector<int>& stones) {priority_queue<int> heap;for(int x:stones) heap.push(x);while(heap.size()>1){int a=heap.top(); heap.pop();int b=heap.top(); heap.pop();if(a>b) heap.push(a-b);}return heap.size()?heap.top():0;}
};

02.数据流中的第 K 大元素

题目链接:https://leetcode.cn/problems/kth-largest-element-in-a-stream/

设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。

请实现 KthLargest 类:

  • KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
  • int add(int val)val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

示例:

输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

提示:

  • 1 <= k <= 104
  • 0 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • -104 <= val <= 104
  • 最多调用 add 方法 104
  • 题目数据保证,在查找第 k 大元素时,数组中至少有 k 个元素

思路

这里是典型的topk问题,找的是第k个大的数,所以我们使用一个k大的小堆就能很好的解决这个问题。

在构造函数中,将初始的元素加入最小堆中,并维护堆的大小为 K,保证堆中只有前 K 大的元素。

当有新元素加入时,将新元素加入最小堆中,然后检查堆的大小是否超过 K,如果超过则弹出堆顶元素。最终返回当前堆顶元素,即为第 K 大的元素。这样,通过不断地将新元素加入最小堆,并保持堆的大小为 K,可以在 add 操作后始终保持堆中的元素为前 K 大的元素,而堆顶元素即为第 K 大的元素。

代码

class KthLargest {priority_queue<int,vector<int>,greater<int>> heap;int _k;
public:KthLargest(int k, vector<int>& nums) {_k=k;for(int& x:nums){heap.push(x);if(heap.size()>k) heap.pop();}}int add(int val) {heap.push(val);if(heap.size()>_k) heap.pop();return heap.top();}
};/*** Your KthLargest object will be instantiated and called as such:* KthLargest* obj = new KthLargest(k, nums);* int param_1 = obj->add(val);*/

03.前K个高频单词

题目链接:https://leetcode.cn/problems/top-k-frequent-words/

给定一个单词列表 words 和一个整数 k ,返回前 k 个出现次数最多的单词。

返回的答案应该按单词出现频率由高到低排序。如果不同的单词有相同出现频率, 按字典顺序 排序。

示例 1:

输入: words = ["i", "love", "leetcode", "i", "love", "coding"], k = 2
输出: ["i", "love"]
解析: "i" 和 "love" 为出现次数最多的两个单词,均为2次。注意,按字母顺序 "i" 在 "love" 之前。

示例 2:

输入: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
输出: ["the", "is", "sunny", "day"]
解析: "the", "is", "sunny" 和 "day" 是出现次数最多的四个单词,出现次数依次为 4, 3, 2 和 1 次。

注意:

  • 1 <= words.length <= 500
  • 1 <= words[i] <= 10
  • words[i] 由小写英文字母组成。
  • k 的取值范围是 [1, **不同** words[i] 的数量]

**进阶:**尝试以 O(n log k) 时间复杂度和 O(n) 空间复杂度解决。

思路

很显然这里这是还是topk问题,还是使用堆来解决问题,但是这里有两个比较条件,所以我们要注意比较函数的实现,主逻辑是找出前k个出现次数最多的,所以整体我们建小堆,还有一个附属条件,次数相同时,字典序小的排在前面,所以在相同次数时,我们相对于字符串建大堆,将字母小的排在前面。

  1. 哈希表统计频率: 使用 unordered_map 哈希表记录每个字符串出现的频率。
  2. 优先队列: 使用一个自定义的比较函数对象 cmp 作为优先队列的比较规则。按照频率从大到小排序,若频率相同则按照字符串字典序从小到大排序。遍历哈希表,将每个键值对(字符串及其频率)加入最小堆,并保持堆的大小为 K,当堆的大小超过 K 时,弹出堆顶元素。
  3. 结果处理: 从堆中依次取出前 K 高的字符串,存储到结果数组中。

最终,返回存储前 K 高字符串的结果数组 ret。这样通过哈希表统计频率,并使用优先队列来维护前 K 高的频率,实现了找出频率前 K 高的字符串。

代码

class Solution {struct cmp{bool operator()(const pair<string,int>& a,const pair<string,int>& b){if(a.second==b.second) return a.first<b.first;return a.second>b.second;}};
public:vector<string> topKFrequent(vector<string>& words, int k) {unordered_map<string,int> hash;for(string& s:words) hash[s]++;priority_queue<pair<string,int>,vector<pair<string,int>>,cmp> heap;for(const pair<string,int>& x:hash){heap.push(x);if(heap.size()>k) heap.pop();}vector<string> ret(k);for(int i=k-1;i>=0;--i){ret[i]=heap.top().first;heap.pop();}return ret;}
};

04.数据流的中位数

题目链接:https://leetcode.cn/problems/find-median-from-data-stream/

中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。

  • 例如 arr = [2,3,4] 的中位数是 3
  • 例如 arr = [2,3] 的中位数是 (2 + 3) / 2 = 2.5

实现 MedianFinder 类:

  • MedianFinder() 初始化 MedianFinder 对象。
  • void addNum(int num) 将数据流中的整数 num 添加到数据结构中。
  • double findMedian() 返回到目前为止所有元素的中位数。与实际答案相差 10-5 以内的答案将被接受。

示例 1:

输入
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
输出
[null, null, null, 1.5, null, 2.0]解释
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1);    // arr = [1]
medianFinder.addNum(2);    // arr = [1, 2]
medianFinder.findMedian(); // 返回 1.5 ((1 + 2) / 2)
medianFinder.addNum(3);    // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

提示:

  • -105 <= num <= 105
  • 在调用 findMedian 之前,数据结构中至少有一个元素
  • 最多 5 * 104 次调用 addNumfindMedian

思路

这里我们最容易想到的暴力解法就是每次插入时排序,但是这种方法时间复杂度太高,其实这里我们可以使用一个大堆和一个小堆来维护所有数,各分一半数据,若两边长度相等,则返回两个堆顶相加除2的值,若不等,返回大堆堆顶即可。

在构造函数中初始化两个优先队列,left 用于存放较小的一半元素(最大堆),right 用于存放较大的一半元素(最小堆)。 在 addNum 方法中,根据元素的大小选择将其插入到左堆或右堆。插入后需要保持两个堆的大小差不超过 1,以确保中位数的计算。 在 findMedian 方法中,根据两个堆的大小关系返回中位数。通过这种方式,不断将数据插入到两个堆中,并保持它们的大小差不超过 1,就能够在 O(1) 时间内查找到当前数据流的中位数。

代码

class MedianFinder {priority_queue<int> left;priority_queue<int,vector<int>,greater<int>> right;
public:MedianFinder() {}void addNum(int num) {if(left.size()==right.size()){if(left.empty()||num<=left.top()) left.push(num);else{right.push(num);left.push(right.top());right.pop();}}else{if(num<=left.top()){left.push(num);right.push(left.top());left.pop();}else right.push(num);}}double findMedian() {if(left.size()==right.size()) return (left.top()+right.top())/2.0;return left.top();}
};/*** Your MedianFinder object will be instantiated and called as such:* MedianFinder* obj = new MedianFinder();* obj->addNum(num);* double param_2 = obj->findMedian();*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/471916.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重磅!OpenAI发布文生视频模型Sora——视频模型的奇点或许来临!!

文章目录 1 卓越能力1.1 60s超长时间 高度详细复杂的场景1.2 复杂的相机运动1.3 同一场景多个镜头 2 技术原理3 不足4 安全战略5 碎碎念 OpenAI发布文生视频模型Sora——视频模型的奇点或许来临&#xff01;&#xff01; 初七啦&#xff0c;得开始工作了&#xff0c;没想到第一…

彻底理解无刷电机

前言 现在很多设备都是搭载的无刷电机而不是有刷电机了&#xff0c;为啥&#xff1f;性能好啊&#xff01; 引入 同性相斥异性相吸 可以看出&#xff0c;只要改变磁铁的极性&#xff0c;电机就能转起来 那 怎么改变磁铁极性呢&#xff1f; 右手螺旋定则可以根据电流的流向…

tcp 中使用的定时器

定时器的使用场景主要有两种。 &#xff08;1&#xff09;周期性任务 这是定时器最常用的一种场景&#xff0c;比如 tcp 中的 keepalive 定时器&#xff0c;起到 tcp 连接的两端保活的作用&#xff0c;周期性发送数据包&#xff0c;如果对端回复报文&#xff0c;说明对端还活着…

阿里云香港服务器租用优惠价格表,2024更新

阿里云香港服务器2核1G、30M带宽、40GB ESSD系统盘优惠价格24元/月&#xff0c;288元一年&#xff0c;每月流量1024GB&#xff0c;多配置可选&#xff0c;官方优惠活动入口 https://t.aliyun.com/U/bLynLC 阿里云服务器网aliyunfuwuqi.com分享阿里云香港服务器优惠活动、详细配…

如何在30天内使用python制作一个卡牌游戏

如何在30天内使用python制作一个卡牌游戏 第1-5天&#xff1a;规划和设计第6-10天&#xff1a;搭建游戏框架第11-20天&#xff1a;核心游戏机制开发第21-25天&#xff1a;游戏界面和用户体验第26-30天&#xff1a;测试和发布附加建议游戏类型游戏规则设计界面设计技术选型第6-…

【机器学习】数据清洗之识别重复点

&#x1f388;个人主页&#xff1a;甜美的江 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进步…

2024/02/13

21 、C 22 、D 23、B 如果5先出栈那么1&#xff0c;2&#xff0c;3&#xff0c;4就已经入栈了&#xff0c;5出后4出&#xff0c;1要出栈必须先让3&#xff0c;2出栈&#xff0c;所以 不可能输出B 24、10&#xff0c;12&#xff0c;120 25、2&#xff0c;5 26、段错…

分布式锁redisson

文章目录 1. 分布式锁1.1 基本原理和实现方式对比synchronized锁在集群模式下的问题多jvm使用同一个锁监视器分布式锁概念分布式锁须满足的条件分布式锁的实现 1.2 基于Redis的分布式锁获取锁&释放锁操作示例 基于Redis实现分布式锁初级版本ILock接口SimpleRedisLock使用示…

网络安全防御保护 Day5

今天的任务如下 要求一的解决方法&#xff1a; 前面这些都是在防火墙FW1上的配置。 首先创建电信的NAT策略 这里新建转换后的地址池 移动同理&#xff0c;不过地址池不一样 要求二的解决方法&#xff1a; 切换至服务器映射选项&#xff0c;点击新建&#xff0c;配置外网通过…

0102awvs安装-扫描-信息收集

1 安装awvs23.7 解压压缩包&#xff0c;解压密码网站网址&#xff0c;下载地址在最后链接双击acunetix_23.7.230728157.exe安装程序 安装位置默认&#xff0c;如更改位置&#xff0c;后面需要更改bat文件相应内容 设置管理员信息 next直到浏览器跳出登录界面 2 运行运行www.dd…

不同AI分析错误代码的差异:谁更胜一筹?谁才是最强者?结果出乎意料!

先祝大家新春快乐&#xff0c;我已经提前三天上班了~~为了年后新框架能上线运行&#xff0c;这几天没人打扰&#xff0c;能安静地冲一下代码&#xff0c;嘎嘎嘎。 准备 错误代码&#xff1a; ... foreach($arr_config[path] as $value_path) {if(file_exists($value_path)){r…

分布式文件系统 SpringBoot+FastDFS+Vue.js【四】

分布式文件系统 SpringBootFastDFSVue.js【四】 八、文件的下载和删除功能8.1.FastDFSClient.java8.2.FileServerController.java8.3.Vue的fast.js8.4.fastdfsimg.vue8.5.效果 九、总结endl 八、文件的下载和删除功能 8.1.FastDFSClient.java Slf4j public class FastDFSClie…