【数据结构】16 二叉树的定义,性质,存储结构(以及先序、后序、中序遍历)

二叉树

一个二叉树是一个有穷的结点集合。
它是由根节点和称为其左子树和右子树的两个不相交的二叉树组成的。
二叉树可具有以下5种形态。
在这里插入图片描述

性质

  1. 一个二叉树第i层的最大结点数为 2 i − 1 2^{i-1} 2i1, i ≥ 1 i \geq 1 i1
    每层最大结点可以对应完美二叉树(满二叉树),其所有分支结点都存在左右子树,并且所有叶结点都在同一层上。
    在这里插入图片描述
  2. 深度为k的二叉树有最大结点总数: 2 k − 1 2^k-1 2k1, k ≥ 1 k \geq 1 k1
    1 + 2 + . . . + 2 k − 1 = 2 k − 1 1 + 2 + ... +2^{k-1} = 2^k-1 1+2+...+2k1=2k1
  3. 对任何非空的二叉树 T n T_n Tn,若 n 0 n_0 n0是叶结点的个数, n 2 n_2 n2是度为2的非叶结点的个数,则: n 0 = n 2 + 1 n_0 = n_2 +1 n0=n2+1
    一颗二叉树:总结点数 = 叶节点 + 度为1的结点 + 度为2的结点
    又:总结点数 = 总边数+1
    且:总边数 = 2 ∗ 2* 2度为2的结点 + 度为1的结点
    由此得到: n 0 = n 2 + 1 n_0 = n_2 +1 n0=n2+1
  4. 具有n个结点的完全二叉树的深度k为 ⌊ l o g 2 n ⌋ + 1 \lfloor log_2{n} \rfloor +1 log2n+1
    (1) 满二叉树时:
    k深度: 结点 2 k − 1 2^k-1 2k1
    n = 2 k − 1 n = 2^k-1 n=2k1 k = l o g 2 n + 1 k = log_2{n+1} k=log2n+1
    (2)最底层只有一个结点
    k深度: 结点 2 k − 1 2^{k-1} 2k1
    解得: k = l o g 2 n + 1 k = log_2{n} +1 k=log2n+1
    l o g 2 ( n + 1 ) ≤ k ≤ l o g 2 n + 1 log_2{(n+1)} \leq k \leq log_2n +1 log2(n+1)klog2n+1
    则具有n个结点的完全二叉树的深度k为 ⌊ l o g 2 n ⌋ + 1 \lfloor log_2{n} \rfloor +1 log2n+1

存储结构

顺序存储

这种结构是川一组连续的存储单元(比如数组)存储二叉树结点的数据,结点的父子系是通过它们相对位置来反映的,而不需要任何附加的存储单元来存放指针,通常情况下顺序存储结构用于完全二叉树
具体实现是从树的根结点开始,从上层至下层,每层从左到右,依次给结点编号并将数据存放到一个数组的对应单元中。
结点C的父结点是结点B,它的左孩子是结点w,右孩子是结点K。C结点存储单元的下标是4,将其除以2得到它的父结点B的存储单元下标,而将其乘以2则是它的左孩子w存储单元的下标,当然将其乘2再加1则是它右孩子K的存储单元下标。
在这里插入图片描述
在这里插入图片描述

链式存储

虽然顺序存储的空间利用率高,计算简单,但是其不适于一般的二叉树
如图为给定的二叉树。给出了从上至下、从左至右的层序存储的对应结点编号,其中灰色结点是为了满足顺序存储要求而增加的“虚”结点,可以在相应的存储单元存放一个特殊的数值,以区别于其他“实结点”。图4.10(c)则是最终的存储结果。
可以看到,5个结点的二叉树,顺序存储需要13个存储单元,超过一半的存储空间浪费掉了。更有甚者,对一个深度为h的右斜二叉树来讲,需要2-1个存储单元,而实际上该斜二叉树只有k个结点。

另外,二叉树的顺序存储方式避免不了顺序存储的固有缺点,即不易实现增加、删除操作。因此,二叉树的顺序存储方式适用于一定的条件,对于不需要修改的完全二叉树,是一种较好的选择。
实际上,二叉树的最常用表示方法是用链表表示,每个结点由数据和左右指针三个数据成员组成。

结构定义

typedef int ElementType;
typedef struct TNode* Position;
typedef Position BinTree;
struct TNode {ElementType Data;//结点数据BinTree Left; //指向左子树BinTree Right; //指向右子树
};

操作实现

遍历

我们用L,V,R分别表示遍历左分支L,访问结点V,遍历右分支R,那么可以有以下6种情况:LVR,LRV,VLR,VRL,RLV,RVL。
规定:访问左分支在右分支之前,只剩下:LVR, LRV, VLR。
我们按照V的位置分别将其命名为:中序遍历,后序遍历,先序遍历

中序遍历

对树的任一结点的访问是在先遍历完其左子树后进行的,访问此结点后,在对其右子树遍历
遇到每个结点,其遍历过程

  1. 中序遍历左子树
  2. 访问根节点
  3. 中序遍历右节点
void InorderTraveral(BinTree BT) {if (BT) {InorderTraveral(BT->Left);printf("%d\n, BT->Data");InorderTraveral(BT->Right);}
}
后序遍历

对结点的左右子树先进行遍历,然后才对此结点访问。遍历是从根节点开始,遇到每个结点时,其遍历过程是:

  1. 后序遍历其左子树
  2. 后序遍历其右子树
  3. 访问根节点
void PostorderTraversal(BinTree BT) {if (BT) {PostorderTraversal(BT->Left);printf("%d\n, BT->Data");PostorderTraversal(BT->Right);}
}
先序遍历

对结点的访问是在其左、右子树遍历之前进行的。遍历是从根节点开始,遇到每个结点时,其遍历过程是:

  1. 访问根结点
  2. 先序遍历其左子树
  3. 先序遍历其右子树
void PreorderTraversal(BinTree BT) {if (BT) {printf("%d\n, BT->Data");PreorderTraversal(BT->Left);PreorderTraversal(BT->Right);}
}
非递归遍历

在沿左子树深入时,进入一个结点就将其压入堆栈。
若是先序遍历,则在入栈之前访问之;当沿左分支深入不下去时,则返回,即从堆栈中弹出前面压入的结点;
若为中序遍历,则此时访同该结点,然后从该结点的右子树继续深入;
若为后序遍历,则将此结点二次入栈,然后从该结点的右子树继续深入,与前面类同,仍为进入一个结点入栈一个结点,深入不下去再返回,直到第二次从栈里弹出该结点,才访问之。

对于非递归中序遍历,遇到一个节点就将其压栈,并去遍历其左子树;当左子树结束后,从栈顶弹出结点并访问它,然后按其右指针再去中序遍历该节点的右子树。

void InorderTraversalUn(BinTree BT) {BinTree T;Stack S = CreateStack(100);T = BT;while (T || !IsEmpty(S)) {while (T) {Push(S, T);T = T->Left;}T = Pop(S);printf("%d\n, T->Data");T = T->Right;}}
层序遍历

层序遍历是按照树的层次,从第一层的根结点开始向下逐层访问每个结点,对每一层的结点按照从左到右的顺序访问。
可以设置一个队列结构,遍历从根节点开始,首先将根节指针入队,然后执行以下操作:

  1. 从队列取出一个元素
  2. 访问该元素所指向的结点
  3. 若元素所指向的结点的左右孩子非空,将其左、右孩子的指针入队。
    不断执行这三步,直到队列为空。
void LevelorderTraversal(BinTree BT) {Queue Q;BinTree T;T = BT;Q = CreateQueue(100);AddQ(Q, T);while (!IsEmptyQ(Q)) {T = DeleteQ(Q);printf("%d\n, T->Data");if (!T->Left) { AddQ(Q, T->Left); }if (!T->Right) { AddQ(Q, T->Right); }}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/472302.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux:docker搭建redis集群(3主3从扩容缩容 哈希槽分配)

操作系统:centos7 docker-ce版本:24.0.7 1.准备redis镜像 我这里使用redis 6.0.8 镜像进行操作,如果你也需要镜像,在网络正常情况下直接使用 docker pull redis:6.0.8 即可进行下载,如果你没配置国内加速器&#x…

相机图像质量研究(22)常见问题总结:CMOS期间对成像的影响--光学串扰

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结:光学结构对成…

机器人专题:我国机器人产业园区发展现状、问题、经验及建议

今天分享的是机器人系列深度研究报告:《机器人专题:我国机器人产业园区发展现状、问题、经验及建议》。 (报告出品方:赛迪研究院) 报告共计:26页 机器人作为推动工业化发展和数字中国建设的重要工具&…

LEETCODE 69. x 的平方根

class Solution { public:int mySqrt(int x) {int left0;int rightx;int midleft(right-left)/2;int ans-1;while(left<right){midleft(right-left)/2;if((long long)mid*mid<x){ansmid;leftmid1;}else{rightmid-1;}}return ans;} };*(long long)

js示例1(图片轮播)

<!DOCTYPE html> <html><head><meta charset"utf-8"><title>图片轮播</title><style>#box{ /*给图片盒子创建样式*/ width : 400px;height : 400px; margin: 0 auto; position: rela…

Qlik Sense : 条形图

条形图 “条形图适合比较多个值。维度轴显示所比较的类别条目&#xff0c;度量轴显示每个类别条目的值。” Qlik Sense中的条形图是一种数据可视化工具&#xff0c;用于展示不同类别或维度之间的比较。它通过水平或垂直的条形表示数据&#xff0c;并根据数值的大小进行排序。…

JavaWeb之Servlet接口

Servlet接口 什么是Servlet&#xff1f; Servlet是一种基于Java技术的Web组件&#xff0c;用于生成动态内容&#xff0c;由容器管理&#xff0c;是平台无关的Java类组成&#xff0c;并且由Java Web服务器加载执行&#xff0c;是Web容器的最基本组成单元 什么是Servlet容器&…

如何在电脑和 SD 卡上恢复已删除 MOV等视频文件

MOV 是 Apple 创建的多媒体容器。您可能已经意识到&#xff0c;用 macOS QuickTime Player 录制的视频是以 MOV 格式保存的&#xff0c;而且 MOV 在 Windows 上也兼容。我们可能已经保存了很多 MOV 格式的视频。但是&#xff0c;如果这些 MOV 文件丢失或被意外删除怎么办&#…

14-k8s控制器资源-rs控制器replicasets

replicaset副本控制器&#xff0c;简称&#xff1a;rs控制器&#xff1b; 用法&#xff1a;与rc控制器“几乎”相同&#xff1b; 能力&#xff1a;可以指定pod的副本始终存活&#xff0c;相比于rc控制器&#xff1b;支持标签匹配&#xff0c;也支持标签表达式 注意&#xff1a;…

备战蓝桥杯---数据结构之好题分享1

最近几天在刷学校的题单时&#xff0c;发现了几道十分巧妙又有启发性的题&#xff0c;借此来记录分享一下。 看题&#xff1a; 从整体上看似乎没有什么规律&#xff0c;于是我们从小地方入手&#xff0c;下面是图解&#xff1a; 因此&#xff0c;我们用栈的数据结构实现即可&a…

云计算基础-虚拟化概述

虚拟化概述 虚拟化是一种资源管理技术&#xff0c;能够将计算机的各种实体资源&#xff08;如CPU、内存、磁盘空间、网络适配器等&#xff09;予以抽象、转换后呈现出来并可供分割、组合为一个或多个逻辑上的资源。这种技术通过在计算机硬件上创建一个抽象层&#xff0c;将单台…

【HarmonyOS】ArkUI 组件(四)

List 列表&#xff08;List&#xff09;是一种复杂容器&#xff0c;具备下列特点&#xff1a; 列表项&#xff08;ListItem&#xff09;数量过多超出屏幕后&#xff0c;会自动提供滚动功能。列表项&#xff08;ListItem&#xff09;既可以纵向排列&#xff0c;也可以横向排列…