人工智能学习与实训笔记(一):零基础理解神经网络

目录

 一、什么是神经网络模型

二、机器学习的类型

2.1 监督学习

2.2 无监督学习

2.3 半监督学习

2.4 强化学习

三、网络模型结构基础

3.1 单层网络

​编辑

3.2 多层网络

3.3 非线性多层网络

 四、 回归问题实操:使用Python和NumPy实现波士顿房价预测任务


 一、什么是神经网络模型

简而言之:神经网络模型是拟合现实问题的函数方程,通过输入得到输出。

只不过这个函数是用神经网络的参数来拟合的,神经网络的参数是通过大量数据的训练获得,训练效果越好,则函数越逼近现实情况,就可以用来解决各种实际任务。

一个简单的网络模型函数如下:

y=w1*x1 + w2*x2 + w3*x3... 

其中,y是函数值(模型输出的预测值),x1,x2, x3...是输入值(又叫特征值),w1, w2, w3...是网络参数。

机器学习最根本的目的在于训练出在某个问题上泛化能力强的模型。泛化能力强是指在某问题的所有数据上都能很好地反应输入和输出之间的关系,无论是训练数据,还是测试数据,还是任何属于该问题的未知数据

神经网络经常处理的问题包括:回归问题,图像分类问题,目标检测问题,自然语言处理,喜好推荐等等。

二、机器学习的类型

根据训练期间接受的监督数量和监督类型,可以将机器学习分为以下四种类型:监督学习、非监督学习、半监督学习和强化学习。

2.1 监督学习

在监督学习中,提供给算法的包含所需解决方案的训练数据,成为标签或标记。


简单地说,就是监督学习是包含自变量和因变量(有Y),同时可以用于分类和回归。下来常见的算法都是监督学习算法。

  • K近邻算法
  • 线性回归
  • logistic回归
  • 支持向量机(SVM)
  • 决策树和随机森林
  • 神经网络


2.2 无监督学习

无监督学习的训练数据都是未经标记的,算法会在没有指导的情况下自动学习。


简单地说,就是训练数据只有自变量没有因变量(就是没有Y)。

无监督学习的常见算法如下:

  • 聚类算法
    • K均值算法(K-means)
    • 基于密度的聚类方法(DBSCAN)
    • 最大期望算法
  • 可视化和降维
    • 主成分分析
    • 核主成分分析
  • 关联规则学习
    • Apriori
    • Eclat

比如说,我们有大量的购物访客的数据,包括一个月内的到达次数、购买次数、平均客单价、购物时长、购物种类、数量等,我们可以通过聚类算法,自动的把这些人分成几个类别,分类后,我们可以人工的把这些分类标记,如企业客户、家庭主妇等,也可以分成更细的分类。


另一种任务是降维,降维的目的在于不丢失太多的信息的情况下简化数据。方法之一就是讲多个特征合并为一个特征,特变是特征之间存在很大的相关性的变量。如汽车的里程和使用年限是存在很大的相关性的,所以降维算法可以将它们合并为一个表示汽车磨损的特征。这个过程就叫做特征提取。

另一个典型的无监督学习的是异常检测,如可以从检测信用卡交易中发现异常,并且这些异常我们实现没有标记的,算法可以自动发现异常。


2.3 半监督学习


有些算法可以处理部分标记的训练数据,通常是大量未标记的数据和少量标记的数据,这种成为半监督学习。

如照片识别就是很好的例子。在线相册可以指定识别同一个人的照片(无监督学习),当你把这些同一个人增加一个标签的后,新的有同一个人的照片就自动帮你加上标签了。


大多数半监督学习算法都是无监督和监督算法的结合。例如深度信念网络(DBN)基于一种相互堆叠的无监督式组件。

2.4 强化学习

强化学习是一个非常与众不同的算法,它的学习系统能够观测环境,做出选择,执行操作并获得回报,或者是以负面回报的形式获得惩罚。它必须自行学习什么是最好的策略,从而随着时间推移获得最大的回报。


例如,许多机器人通过强化学习算法来学习如何行走。AlphaGo项目也是一个强化学习的好例子。

三、网络模型结构基础

3.1 单层网络

(输入层) --w--> (输出层)


3.2 多层网络

(输入层) --w--> (隐含层) --w--> (隐含层) ... --> (输出层)

3.3 非线性多层网络

单层网络和多层网络默认只能表达线性变换,加入非线性激活函数后,可以表达非线性函数:

(输入层) --w--> (隐含层) --> (激活函数) --w--> (隐含层) --> (激活函数) ... --> (输出层)

加入非线性激励函数后,神经网络就有可能学习到平滑的曲线来分割平面,而不是用复杂的线性组合逼近平滑曲线来分割平面,使神经网络的表示能力更强了,能够更好的拟合目标函数。 这就是为什么我们要有非线性的激活函数的原因。

关于激活函数,可以参考:卷积神经网络中的激活函数sigmoid、tanh、relu_卷积神经网络激活函数_chaiky的博客-CSDN博客

 四、 回归问题实操:使用Python和NumPy实现波士顿房价预测任务

神经网络模型预测数据中比较常见的是回归问题,根据输入的数值得到输出的数值。使用Python来实现波士顿房价预测是AI课程里类似“hello world”的经典入门案例,主要有以下一些要点需注意:

1. 样本数据需要归一化,使得后续的神经网络模型参数可表征有效的权重。样本数据归一化是以列(特征值)为单位的。注意,在用测试集测试模型时,模型输出的函数预测值需要进行反归一化。


2. 数据集划分:80%用于训练,20%用于测试,训练和测试数据集必须分开,才能验证网络的有效性。


3. 影响波士顿房价的样本数据有13个特征值,每个特征值会有不同的权重,因此神经网络模型的可调参数为13个,分别代表不同特征值对最终房价影响的权重:y=w1*x1 + w2*x2 + ... +w13*x13


4. 损失函数是模型输出的值与样本数据中实际值偏差的一种表达函数,损失函数的选择既要考虑准确衡量问题的“合理性”,也还要考虑“易于优化求解”。


5. 训练过程就是通过不断调整网络模型参数,将损失函数的值降到最小(收敛)的过程, 损失函数的收敛需要通过梯度下降法来不断训练。以房价预测任务为例,影响房价的特征值有13个,因此我们需要调教的模型参数也是13个,这13个特征值和损失函数的值共同构成一个14维的空间,在这个空间中存在一个方向(13个参数构成向量决定这个方向)使得损失函数的值(预测值和实际值之偏差)下降最快。我们步进地将13个参数构成的向量朝此方向做出微调,再重新计算损失函数的值,如此往复,直到损失函数的值收敛趋于最小,则参数训练完成。

6. 数据集采用分批训练的方式,batch的取值会影响模型训练效果,batch过大,会增大内存消耗和计算时间,且训练效果并不会明显提升(每次参数只向梯度反方向移动一小步,因此方向没必要特别精确);batch过小,每个batch的样本数据没有统计意义,计算的梯度方向可能偏差较大。由于房价预测模型的训练数据集较小,因此将batch设置为10

       

Python源码 - 波士顿房价模型训练及测试:

# 导入需要用到的package
import numpy as np
import json
import matplotlib.pyplot as pltdef load_data():# 从文件导入数据datafile = './work/housing.data'data = np.fromfile(datafile, sep=' ')# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]feature_num = len(feature_names)# 将原始数据进行Reshape,变成[N, 14]这样的形状data = data.reshape([data.shape[0] // feature_num, feature_num])# 将原数据集拆分成训练集和测试集# 这里使用80%的数据做训练,20%的数据做测试# 测试集和训练集必须是没有交集的ratio = 0.8offset = int(data.shape[0] * ratio)training_data = data[:offset]# 计算训练集的最大值,最小值(找的是每一列的极值)global maximums, minimums#maximums, minimums = data.max(axis=0), data.min(axis=0)maximums, minimums = training_data.max(axis=0), training_data.min(axis=0)#print("max:", maximums, "min:", minimums)# 对数据进行归一化处理,按列归一化处理for i in range(feature_num):data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])#print("归一化后的数据:\n", data)# 训练集和测试集的划分比例training_data = data[:offset]test_data = data[offset:]return training_data, test_data# 获取数据
training_data, test_data = load_data()
x = training_data[:, :-1] #所有行+所有列(除了最后一列)
y = training_data[:, -1:] #所有行+最后一列#w = [1, 2, 3] #shape = (3,)
#w = [[1], [2], [3]] #shape = (3,1)
#w = [[1,1], [2,2], [3,3]] #shape = (3,2)
#x = np.array(w)
# 查看数据
#print(x.shape)
#print(y.shape)class Network(object):def __init__(self, num_of_weights):# 随机产生w的初始值# 为了保持程序每次运行结果的一致性,# 此处设置固定的随机数种子np.random.seed(0)self.w = np.random.randn(num_of_weights, 1)#print("init self.w", self.w)self.b = 0.def forward(self, x):z = np.dot(x, self.w) + self.b #x是[404,13]的矩阵(404行,13列), w是[13, 1]的矩阵(13行,1列),做点乘return zdef loss(self, z, y):error = z - y#print(error.shape)cost = error * errorcost = np.mean(cost)return costdef gradient(self, x, y):z = self.forward(x)gradient_w = (z-y)*x #梯度公式gradient_w = np.mean(gradient_w, axis=0) #对各列求均值gradient_w = gradient_w[:, np.newaxis]gradient_b = (z - y)gradient_b = np.mean(gradient_b)   return gradient_w, gradient_bdef update(self, gradient_w, gradient_b, eta = 0.01):self.w = self.w - eta * gradient_wself.b = self.b - eta * gradient_bdef train(self, x, y, iterations=100, eta=0.01):losses = []for i in range(iterations):z = self.forward(x)L = self.loss(z, y)gradient_w, gradient_b = self.gradient(x, y)self.update(gradient_w, gradient_b, eta)losses.append(L)if (i+1) % 10000 == 0:print('iter {}, loss {}'.format(i, L))return losses# 运行模式一:每次用所有数据进行训练
train_data, test_data = load_data()
x = train_data[:, :-1]
#print("x.shape:", x.shape)
y = train_data[:, -1:]
# 创建网络
net = Network(13)
num_iterations=100000
# 启动训练
losses = net.train(x,y, iterations=num_iterations, eta=0.01)# 画出损失函数的变化趋势
"""
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()
"""#对数据做反归一化处理
def restore_data(d):d = d* (maximums[-1] - minimums[-1]) + minimums[-1]return round(d,2)#用测试集做测试
print("测试集测试结果:")
x = test_data[:, :-1]
y = test_data[:, -1:]
z = net.forward(x)
print("样本数据", "\t", "预测数据")
print("-------------------------")
for i in range(x.shape[0]):print(restore_data(y[i][0]), "\t\t", restore_data(z[i][0]))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/472992.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习基础之《TensorFlow框架(4)—Operation》

一、常见的OP 1、举例 类型实例标量运算add,sub,mul,div,exp,log,greater,less,equal向量运算concat,slice,splot,canstant,rank&am…

【汇总】解决IndexedDB报Failed to execute ‘transaction‘ on ‘IDBDatabase‘

问题发现 再学习HTML5中&#xff0c;有介绍到 Web 存储&#xff0c;当代码编写完成后&#xff0c;运行报错 Failed to execute ‘transaction’ on ‘IDBDatabase’: One of the specified object stores was not found. 示例代码如下&#xff1a; <!DOCTYPE html> <…

迷失在前端框架中的初级开发者,总觉得大厦要从二层开始建

知乎有人提问&#xff1a;现在是框架主导前端时代&#xff0c;还有必要学习Html&#xff0c;CSS和JavaScript吗&#xff1f;我看很愕然&#xff0c;框架可以节省力气&#xff0c;难道都可以替代前端基础了吗&#xff1f; 一、起因 因为贝格前端工场的主营业务就是前端开发&…

Linux桌面

系统信息的截图 登录界面右下角可以切换 Ubuntu on Wayland &#xff0c;虽然还是测试版&#xff0c;不过体验已经比之前的 Xorg 好多了&#xff0c;最笔记本上使用最影响体验的高分屏适配功能&#xff0c;在 wayland 中也是几乎完美支持的。 卸载 snap 这个 snap 是 Ubuntu …

TIM(Timer)定时中断 P1

难点&#xff1a;定时器级联、主从模式 一、简介&#xff1a; 1.TIM&#xff08;Timer&#xff09;定时器 定时器可以对输入的时钟进行计数&#xff0c;并在计数值达到设定值时触发中断 补充&#xff1a; { 定时器本质上是一个计数器&#xff0c;可以工作在定时或计数模式&…

⭐北邮复试刷题429. N 叉树的层序遍历(按层入队出队BFS)

429. N 叉树的层序遍历 给定一个 N 叉树&#xff0c;返回其节点值的层序遍历。&#xff08;即从左到右&#xff0c;逐层遍历&#xff09;。 树的序列化输入是用层序遍历&#xff0c;每组子节点都由 null 值分隔&#xff08;参见示例&#xff09;。 示例 1&#xff1a;输入&a…

[]人的成功离不开气运这么一说!

这里写自定义目录标题 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个…

.NET Core MongoDB数据仓储和工作单元模式封装

前言 上一章我们把系统所需要的MongoDB集合设计好了&#xff0c;这一章我们的主要任务是使用.NET Core应用程序连接MongoDB并且封装MongoDB数据仓储和工作单元模式&#xff0c;因为本章内容涵盖的有点多关于仓储和工作单元的使用就放到下一章节中讲解了。仓储模式&#xff08;R…

开源数据可视化应用程序JSON Crack

什么是 JSON Crack &#xff1f; JSON Crack 是一款免费的开源数据可视化应用程序&#xff0c;能够将 JSON、YAML、XML、CSV 等数据格式可视化为交互式图表。凭借其直观且用户友好的界面&#xff0c;JSON Crack 可以轻松探索、分析和理解即使是最复杂的数据结构。无论您是从事大…

【Chrono Engine学习总结】5-sensor-5.2-导出lidar数据的方法与原理探究

由于Chrono的官方教程在一些细节方面解释的并不清楚&#xff0c;自己做了一些尝试&#xff0c;做学习总结。 1、Sensor数据生成流程回顾 Chrono里面&#xff0c;sensor的数据生成、可视化、以及保存&#xff0c;都需要单独进行设置才能实现。sensor数据的采集流程如下https:/…

17.3.1.6 自定义处理

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 模拟某款图像处理软件的处理&#xff0c;它只留下红色、绿色或者蓝色这样的单一颜色。 首先按照颜色划分了6个色系&#xff0c;分别…

P2P 应用

P2P 工作方式概述 在 P2P 工作方式下&#xff0c;所有的音频/视频文件都是在普通的互联网用户之间传输。 1 具有集中目录服务器的 P2P 工作方式 Napster 最早使用 P2P 技术&#xff0c;提供免费下载 MP3 音乐。 Napster 将所有音乐文件的索引信息都集中存放在 Napster 目录服…