(07)Hive——窗口函数详解

一、 窗口函数知识点

1.1 窗户函数的定义

        窗口函数可以拆分为【窗口+函数】。窗口函数官网指路:

LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationicon-default.png?t=N7T8https://cwiki.apache.org/confluence/display/Hive/LanguageManual%20WindowingAndAnalytics

  • 窗口:over(),指明函数要处理的数据范围
  • 函数:指明函数计算逻辑

1.2 窗户函数的语法

<窗口函数>window_name  over ( [partition by 字段...]  [order by 字段...]  [窗口子句] )
  • window_name:给窗口指定一个别名。
  • over:用来指定函数执行的窗口范围,如果后面括号中什么都不写,即over() ,意味着窗口包含满足where 条件的所有行,窗口函数基于所有行进行计算。
  • 符号[] 代表:可选项;  | : 代表二选一
  •  partition by 子句: 窗口按照哪些字段进行分组,窗口函数在不同的分组上分别执行。分组间互相独立。
  • order by 子句:每个partition内部按照哪些字段进行排序,如果没有partition ,那就直接按照最大的窗口排序,且默认是按照升序(asc)排列。
  • 窗口子句:显示声明范围(不写窗口子句的话,会有默认值)。常用的窗口子句如下:

1.3 窗口子句范围大小的控制

rows 或 range子句往往来控制窗口的边界范围,其语法如下:

    rows between unbounded preceding and  unbounded following; -- 上无边界到下无边界(一般用于求 总和)rows between unbounded preceding and current row;  --上无边界到当前记录(累计值)rows between 1 preceding and current row; --从上一行到当前行rows between 1 preceding and 1 following; --从上一行到下一行rows between current row and 1 following; --从当前行到下一行

1.4 rows与range的区别

  • rows:rows是真实的行数,也就是我们实际中所说的1,2,3...连续的行数。
  • range:range是逻辑上的行数,需要通过计算才能知道是哪一行。

      ps: over()里面有order by子句,但没有窗口子句时 ,即: <窗口函数> over ( partition by 字段... order by 字段... ),此时窗口子句是有默认值的 -->  rows between unbounded preceding and current row (上无边界到当前行)。  此时窗口函数语法:

 <窗口函数> over ( partition by 字段... order by 字段... )  等价于  <窗口函数> over ( partition by 字段... order by 字段... rows between unbounded preceding and current row)
      需要注意有个特殊情况:当order by 后面跟的某个字段是有重复行的时候, <窗口函数> over ( partition by 字段... order by 字段... )  不写窗口子句的情况下,窗口子句的默认值是:range between unbounded preceding and current row(上无边界到当前相同行的最后一行)。

     因此,遇到order by 后面跟的某个字段出现重复行,且需要计算【上无边界到当前行】,那就需要手动指定窗口子句 rows between unbounded preceding and current row ,偷懒省略窗口子句会出问题~

    总结如下:

1、窗口子句不能单独出现,必须有order by子句时才能出现。
2、当省略窗口子句时:a) 如果存在order by则默认的窗口是unbounded preceding and current row  --当前组的第一行到当前行,即在当前组中,第一行到当前行b) 如果没有order by则默认的窗口是unbounded preceding and unbounded following  --整个组

 口诀:

  • 有partition by 且有order by,窗口范围:分组中第一行到当前行
  • 有partition by 无order by ,窗口范围:整个分组
  • 无partition by 且有order by 窗口范围:整个表中第一行到当前行
  • 无partition by 无order by,窗口范围:整个分组,即over()   

1.5 窗口函数执行顺序

       一般而言:sql 执行顺序

 from ->join ->on ->where ->group by->with (可以在分组后面加上 with rollup,在分组之后对每个组进行全局汇总) ->select 后面的普通字段,聚合函数-> having(having中可以使用select 字段别名) -> distinct -> order by ->limit

 窗口函数的执行顺序窗口函数是作用于select后的结果集。即:select 的结果集作为窗口函数的输入窗口函数的执行结果只是在原有的列中单独添加一列,形成新的列,它不会对已有的行或列做修改。窗口函数简化版的执行顺序:

  窗口函数具体实现原理解析:

select channel, month,sum(amount) as sum,dense_rank() over (partition by channel order by sum(amount) desc) as dr,row_number() over(partition by channel order by sum(amount) desc) as rn
from sales
group by channel,month;

  上述代码执行过程有两个阶段

   step1 : 计算除窗口函数以外的其他运算,如 from 、join 、where、group by、having等。上面的代码的第一阶段:

select channel,month, sum(amount) as sum 
from sales 
group by channel, month;

step2:step1 输出作为 WindowingTableFunction窗口函数的输入,计算对应的窗口函数值。

1.6 条件判断语句嵌套window子句的执行顺序

HiveSQL——条件判断语句嵌套windows子句的应用-CSDN博客文章浏览阅读1.4k次,点赞42次,收藏21次。HiveSQL——条件判断语句嵌套windows子句的应用https://blog.csdn.net/SHWAITME/article/details/136079305?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170763988016800180626588%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=170763988016800180626588&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-136079305-null-null.nonecase&utm_term=%E6%9D%A1%E4%BB%B6&spm=1018.2226.3001.4450    结论:

  • case when(或 if)语句中嵌套窗口函数时,条件判断语句的执行顺序在窗口函数之后
  • 窗口函数partition by子句中是可以嵌套条件判断语句的 case when(或 if)

1.7 窗口函数中的partition by分组与group by的区别

  • group by 汇总后行数减少,partition by汇总后原表中的行数没变。

  • group by分组后,一组中只返回一个结果。窗口函数中partition by分组,每组每行中都会有一个分析结果。

  • group by分组后,select中的字段必须是group by的字段、sum()等聚合函数或常量;但是窗口函数中的partition by 分组就没有此限制,窗口函数分析的结果可以与表中其他字段并列,其相当于在原表每个分组中新增了一列。

举例:

CREATE TABLE t_order (oid int ,uid int ,otime string,oamount int)
ROW format delimited FIELDS TERMINATED BY ",";
load data local inpath "/opt/module/hive_data/t_order.txt" into table t_order;
with tmp as (selectoid,uid,otime,oamount,date_format(otime, 'yyyy-MM') as dt,---计算rk的目的是为了获取记录中的第一条row_number() over (partition by uid,date_format(otime, 'yyyy-MM') order by otime) rkfrom t_orderorder by uid
)
selectuid,--每个用户一月份的订单数sum(if(dt = '2018-01', 1, 0)) as                 m1_count,--每个用户二月份的订单数sum(if(dt = '2018-02', 1, 0)) as                 m2_count,--每个用户三月份的订单数(当月订单金额超过10元的订单个数)sum(if(dt = '2018-03' and oamount > 10, 1, 0))   m3_count,--当月(3月份)首次下单的金额sum(if(dt = '2018-03' and rk = 1, oamount, 0))   m3_first_amount,-- 开窗函数row_number() over (partition by uid order by  sum(if(dt = '2018-01', 1, 0)))rk
from tmp
group by uid
having m1_count >0 and m2_count=0;

  • 根据HiveSQL的执行顺序得到,窗口函数的执行是在group by,having之后进行,是与select同级别的。如果SQL中既使用了group by又使用了partition by,那么此时partition by的分组是基于group by分组之后的结果集进行的再次分组,即窗口函数分析的数据范围也是基于group by后的数据。

  • 窗口中的partition by分组后,并没有去重功能,而group by具有去重功能

二、窗口函数运用案例

聚合窗口函数-——聚合开窗求累积汇总值

HiveSQL题——聚合函数(sum/count/max/min/avg)-CSDN博客文章浏览阅读1.1k次,点赞19次,收藏19次。HiveSQL题——聚合函数(sum/count/max/min/avg)https://blog.csdn.net/SHWAITME/article/details/135918264排序窗口函数——排序开窗求topN

HiveSQL题——排序函数(row_number/rank/dense_rank)-CSDN博客文章浏览阅读1.3k次,点赞20次,收藏16次。HiveSQL题——排序函数(row_number/rank/dense_rank)https://blog.csdn.net/SHWAITME/article/details/135909662前后窗口函数

HiveSQL题——前后函数(lag/lead)_sql hive lead-CSDN博客文章浏览阅读1.2k次,点赞23次,收藏21次。HiveSQL题——前后函数(lag/lead)_sql hive leadhttps://blog.csdn.net/SHWAITME/article/details/135902998注:参考文章:

窗口函数应用之移动范围计算【详细剖析窗口函数】(HiveSql面试题4详解)-CSDN博客文章浏览阅读3.5k次,点赞17次,收藏53次。本文通过案例来引出对窗口函数的认识,总结了窗口函数的用法及使用规律,该案例主要是对窗口函数在移动计算中的应用,类似于滑动窗口,所谓的滑动窗口也就是指每一行对应对应的数据窗口都不同,通过窗口子句类实现移动计算时数据的范围,也就是窗口每次按行滑动时长度大小,但窗口中每一次对应的数据总是在变化。通过本文你可以获得如下知识: (1)窗口函数的使用规则及用法 (2)窗口子句的使用规则 (3)窗口函数的意义 (4)窗口函数在移动计算中的应用_窗口函数应用之移动范围计算【详细剖析窗口函数】https://blog.csdn.net/godlovedaniel/article/details/106542519

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/473844.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

时序预测 | Matlab实现BO-LSSVM贝叶斯算法优化最小二乘支持向量机时间序列预测

时序预测 | Matlab实现BO-LSSVM贝叶斯算法优化最小二乘支持向量机时间序列预测 目录 时序预测 | Matlab实现BO-LSSVM贝叶斯算法优化最小二乘支持向量机时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现BO-LSSVM贝叶斯算法优化最小二乘支持向量机时间…

pubg开启之路

概要&#xff1a; pubg中文名绝地求生&#xff0c;一款免费游戏&#xff0c;本篇主要讲述如何在电脑上开始pubg 要想下载并开始玩pubg有两个方法(具体就是两个软件)&#xff0c;一个是epic games&#xff0c;另一个是steam 一、加速器是必要的吗&#xff1f; 1、不使用加速…

[word] word怎么使用平均函数 #职场发展#知识分享#其他

word怎么使用平均函数 word怎么使用平均函数&#xff1f; 以word 2016版本为例&#xff0c;具体的操作方法步骤如下&#xff1a; 所需的工具材料&#xff1a;电脑、office软件 步骤一、打开需要求平均数的word文件&#xff0c;。 步骤二、选择工具栏中的“布局”标签&#…

Linux第59步_“buildroot”构建根文件系统第1步_生成rootfs.tar和rootfs.ext4以及通过nfs下载测试

学习安装“buildroot”&#xff0c;通过配置构建根文件系统&#xff0c;编译生成rootfs.tar和rootfs.ext4&#xff0c;以及通过nfs下载测试。 1、了解学习目的&#xff1a; 1)、获取“buildroot”安装包&#xff1b; 2)、使用“buildroot”构建根文件系统&#xff1b; 3)、…

Linux POSIX信号量 线程池

Linux POSIX信号量 线程池 一. 什么是POSIX信号量&#xff1f;二. POSIX信号量实现原理三. POSIX信号量接口函数四. 基于环形队列的生产消费模型五. 线程池 一. 什么是POSIX信号量&#xff1f; POSIX信号量是一种用于同步和互斥操作的机制&#xff0c;属于POSIX&#xff08;Po…

蓝桥杯:C++队列、优先队列、链表

C普通队列 算法竞赛中一般用静态数组来模拟队列&#xff0c;或者使用STL queue。使用C的STL queue时&#xff0c;由于不用自己管理队列&#xff0c;因此代码很简洁。队列的部分操作如下。 C优先队列 很多算法需要用到一种特殊的队列&#xff1a;优先队列。它的特点是最优数据…

SAP PP学习笔记 - 豆知识04 - 如何修改品目类型(物料类型)

MM01 新建一个品目之后&#xff0c;能不能修改品目类型呢&#xff1f; 答案是可以的&#xff0c;但是也有一些限制。 1&#xff0c;尚未使用的场合&#xff0c;可以直接修改 比如新规一个品目之后&#xff0c;尚未产生在库&#xff08;stocks&#xff09;&#xff0c;在库预约…

开关电源电路主要元器件基础知识详解

在学习电子电路过程中&#xff0c;电源我们无法绕开的一个重要部分&#xff0c;很多时候&#xff0c;故障就出现在电源部分&#xff0c;特别是开关电源。开关电源电路主要是由熔断器、热敏电阻器、互感滤波器、桥式整流电路、滤波电容器、开关振荡集成电路、开关变压器、光耦合…

【C语言】长篇详解,字符系列篇1-----“混杂”的各种字符类型字符转换和strlen的模拟实现【图文详解】

欢迎来CILMY23的博客喔&#xff0c;本期系列为【C语言】长篇详解&#xff0c;字符系列篇1-----“混杂”的各种字符函数……&#xff0c;图文讲解各种字符函数&#xff0c;带大家更深刻理解C语言中各种字符函数的应用&#xff0c;感谢观看&#xff0c;支持的可以给个赞哇。 前言…

【开源】在线办公系统 JAVA+Vue.js+SpringBoot+MySQL

目录 1 功能模块1.1 员工管理模块1.2 邮件管理模块1.3 人事档案模块1.4 公告管理模块 2 系统展示3 核心代码3.1 查询用户3.2 导入用户3.3 新增公告 4 免责声明 本文项目编号&#xff1a; T 001 。 \color{red}{本文项目编号&#xff1a;T001。} 本文项目编号&#xff1a;T001。…

【机器学习】机器学习常见算法详解第4篇:KNN算法计算过程(已分享,附代码)

本系列文章md笔记&#xff08;已分享&#xff09;主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习&#xff0c;伴随浅显易懂的数学知识&#xff0c;让大家掌握机器学习常见算法原理&#xff0c;应用Scikit-learn实现机器学习算法的应用&#xff0…

家庭动态网络怎么在公网访问主机数据?--DDNS配置(动态域名解析配置)

前言 Dynamic DNS是一个DNS服务。当您的设备IP地址被互联网服务提供商动态变更时,它提供选项来自动变更一个或多个DNS记录的IP地址。 此服务在技术术语上也被称作DDNS或是Dyn DNS 如果您没有一个静态IP,那么每次您重新连接到互联网是IP都会改变。为了避免每次IP变化时手动更…