基于SFLA算法的神经网络优化matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 SFLA的基本原理

4.2 神经网络优化

5.完整程序


1.程序功能描述

       基于SFLA算法的神经网络优化。通过混合蛙跳算法,对神经网络的训练进行优化,优化目标位神经网络的训练误差,通过优化,使得训练误差越来越小,从而完成神经网络权值的优化。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

.....................................................................
% 定义神经元数量  
Nnet       = 12;
% 创建一个前馈神经网络,训练函数为'traingdx'  
NET        = feedforwardnet(Nnet,'traingdx');
% 使用Pin作为输入,Pout作为目标来训练神经网络,训练结果存储在tr中  
[NET,~]    = train(NET,Pin,Pout);
% 计算神经网络的性能
Performace = perform(NET,Pin,Pout); 
%定义目标函数
jobs       = @(x) func_mse(x,NET,Pin,Pout);%SFLA算法% 优化后的权重和偏置存储在x中,误差存储在err_ga中  
[x, ~]     = func_sfla(jobs, RC*Nnet+Nnet+Nnet+1);
%优化后的网络,使用优化后的权重和偏置更新神经网络  
NET        = setwb(NET, x');% 计算优化后的神经网络误差  
Outputs=NET(Pin);
TestOutputs=NET(Tin);err1=Pout-Outputs;
err2=Tout-TestOutputs;figure;
subplot(2,2,1)
plot(Pout,'b');  
hold on;
plot(Outputs,'r');
legend('训练集的真实值','训练集的预测值');subplot(2,2,2)
plot(Tout,'b'); 
hold on;
plot(TestOutputs,'r');
legend('测试集的真实值','测试集的预测值');subplot(2,2,3)
plot(err1,'linewidth',2); 
legend('训练集误差');
ylim([-0.5,0.5]);subplot(2,2,4)
plot(err2,'linewidth',2);  
legend('测试集误差');
ylim([-0.5,0.5]);figure;
subplot(1,2,1)
[yfits,gof] = fit(Pout',Outputs','poly3');
plot(Pout',Outputs','o');
hold on
plot(yfits,'k-','predobs');
xlabel('真实值');
ylabel('预测输出值');   subplot(1,2,2)
[yfits,gof] = fit(Tout',TestOutputs','poly3');
plot(Tout',TestOutputs','o');
hold on
plot(yfits,'r-','predobs');  
xlabel('真实值');
ylabel('预测输出值');   
29

4.本算法原理

        神经网络优化是一个复杂的问题,通常涉及到权重和偏置的调整,以便最小化训练误差。SFLA是一种启发式搜索算法,它结合了蛙跳算法和遗传算法的特点,用于求解全局优化问题。在神经网络优化中,SFLA可以用于寻找最优的权重和偏置,从而改善网络的性能。

4.1 SFLA的基本原理

        SFLA的基本原理是将搜索空间中的解(即神经网络的权重和偏置)视为“蛙群”。算法通过模拟蛙群的跳跃行为来搜索解空间,寻找最优解。

  • 初始化:随机生成一组初始解(蛙群),每个解代表神经网络的一组权重和偏置。
  • 分组:将蛙群按照适应度(如训练误差)排序,并分成若干个子群。
  • 局部搜索:在每个子群内,进行蛙跳操作,即根据一定的规则和步长更新解的位置(权重和偏置)。
  • 全局信息交流:定期将各个子群的最优解进行交换,以促进全局搜索。
  • 迭代:重复上述步骤,直到满足停止准则(如达到最大迭代次数或解的质量不再显著提高)。

4.2 神经网络优化

       通过SFLA算法对神经网络参数进行全局优化,可以有效地探索参数空间并找到更优的神经网络结构配置,从而提高模型的预测性能。

       基于SFLA的神经网络优化是一种有效的全局优化方法。它通过模拟蛙群的跳跃行为来搜索解空间,结合局部搜索和全局信息交流的策略,能够在复杂的搜索空间中找到近似最优解。然而,为了获得更好的性能,可能需要对SFLA的参数(如子群大小、跳跃步长等)进行仔细调整。此外,与其他优化算法(如遗传算法、粒子群优化等)的结合也是值得研究的方向。

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/474415.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Maven配置

目录 非Maven项目的缺点MavenMaven的仓库Maven的资源坐标Maven的下载安装Maven常用配置本地仓库镜像仓库配置JDK 非Maven项目的缺点 问题一: 项目中的jar包资源需要自己在网上下载,手动导入,不好管理。问题二: jar包版本控制麻烦…

代码随想录刷题笔记 DAY 28 | 复原 IP 地址 No.93 | 子集 No.78 | 子集 II No.90

文章目录 Day 2801. 复原 IP 地址(No. 93)1.1 题目1.2 笔记1.3 代码 02. 子集(No. 78)2.1 题目2.2 笔记2.3 代码 03. 子集 II(No. 90)3.1 题目3.2 笔记3.3 代码 Day 28 01. 复原 IP 地址(No. 9…

RK3399平台开发系列讲解(USB篇)USB 主设备和从设备

🚀返回专栏总目录 文章目录 一、主设备二、集线器三、功能设备 沉淀、分享、成长,让自己和他人都能有所收获!😄 📢介绍 USB 主设备和从设备。 一、主设备 检测 USB 设备的插拔动作管理主从通讯之间的控制流管理主从通…

防火墙 iptables(二)--------------SNAT与DNAT

一、SNAT ①SNAT 应用环境: 局域网主机共享单个公网IP地址接入Internet (私有IP不能在Internet中正常路由) ②SNAT原理: 源地址转换,根据指定条件修改数据包的源IP地址,通常被叫做源映射 数据包从内网发送到公网时,SNAT会把数据包的源IP由…

用Python和OpenCV搭建自己的一维码和QRCode扫描仪(步骤 + 源码)

导 读 本文主要介绍使用Python和OpenCV搭建自己的一维码和QRCode扫描仪(步骤 源码)。 项目简介 本文我们将创建一个程序来扫描图像中的二维码和条形码。对于这个程序,我们需要三个包,分别是OpenCV、NumPy和pyzbar。大多数 Pyth…

Eclipse - Format Comment

Eclipse - Format & Comment 1. Correct Indentation2. Format3. Toggle Comment4. Add Block Comment5. Remove Block CommentReferences 1. Correct Indentation Ctrl A: 选择全部代码 Ctrl I: 校正缩进 or right-click -> Source -> Correct Indentation 2. F…

2024年!PyCharm快捷键大全

收藏!PyCharm快捷键大全 工欲善其事必先利其器,PyCharm 是最popular的Python开发工具,它提供的功能非常强大,是构建大型项目的理想工具之一,如果能挖掘出里面实用技巧,能带来事半功倍的效果。 本文主要向大…

实例讲解join方法的使用

Python的join()方法用于将序列中的元素以指定的字符连接生成一个新的字符串 语法 str.join(sequence) 参数 sequence 要连接的元素序列、字符串、元组、字典 返回值 返回通过指定字符连接序列中的元素后生成的新的字符串 实例 str "-"; seq ("a"…

如何简单上手清华AutoGPT并搭建到本地环境

一、准备工作 安装Docker:确保你的本地机器上已经安装了Docker。如果还没有安装,请访问Docker官方网站并按照指引进行安装。--点击进入Docker官网 获取清华AutoGPT的Docker镜像:清华AutoGPT团队可能已经提供了一个Docker镜像,方便…

uniapp rich-text 富文本组件在微信小程序中自定义内部元素样式

rich-text 富文本组件在微信小程序中,无法直接通过外部css样式控制文章内容样式。 解决方案:将传入的富文本内容截取并添加自定义样式类名 (1)全局配置filter方法,实现富文本内容截取转换,附上‘rich-txt…

浅谈语义分割、图像分类与目标检测中的TP、TN、FP、FN

语义分割 TP:正确地预测出了正类,即原本是正类,识别的也是正类 TN:正确地预测出了负类,即原本是负类,识别的也是负类 FP:错误地预测为了正类,即原本是负类,识别的是正类…

Doris ——SQL原理解析

目录 前言 一、Doris简介 二、SQL解析简介 2.1 词法分析 2.2 语法分析 2.3 逻辑计划 2.4 物理计划 三、Doris SQL解析的总体架构 四、Parse阶段 五、Analyze阶段 六、SinglePlan阶段(生成单机逻辑Plan阶段) 七、DistributedPlan计划&#xf…