AMD FPGA设计优化宝典笔记(5)低频全局复位与高扇出

在这里插入图片描述

亚军老师的这本书《AMD FPGA设计优化宝典》,他主要讲了两个东西:
第一个东西是代码的良好风格;
第二个是设计收敛等的本质。
这个书的结构是一个总论,加上另外的9个优化,包含的有:时钟网络、组合逻辑、触发器、移位寄存器、存储器、乘加运算单元、状态机、扇出、布线拥塞。大部头的书看起来比较痛苦,我简化的方式,选择触发器一章入手,这个平时有点了解,也觉得看完会用上的概率大一些。这章是书的第4章,全局复位方面的内容,接前面的我的文章:

全局复位

P197
电路板上的按压开关复位信号,做全局复位,带来的影响是什么?
这种全局复位信号,频率比较低,如果用作FPGA内部的同步复位,那这个信号本身扇出就会很大,再由于频率较低导致的建立时间变小了,容易让不同级的寄存器的复位不在同一个时钟内激活、时序不收敛
流水线寄存器处理数据中,问题可能不大,不同级的寄存器的复位不在同一个时钟内激活,但老数据可以被新数据冲掉,若干时钟周期后,流水线就正常运转了。
但如果这是一条流水线寄存器用作控制路径,无法在同一个时钟周期内激活各个寄存器的复位,会导致信号错误,功能就不对了。

补充信息 名词解释:

1 扇入、扇出系数:

扇入系数是指门电路允许的输入端数目。
扇出系数是指一个门的输出端所驱动同类型门的个数。扇出系数体现了门电路的负载能力。

2 高扇出

高扇出指的是一个逻辑单元驱动的逻辑单元过多。常见于寄存器驱动过多的组合逻辑单元。至于驱动多少逻辑单元算过多,需要根据工艺,后端实现情况以及芯片本身类型来决定。一般来说如果驱动逻辑大于10K以上,算是比较多的了。
高扇出问题,通常是指用一个节点驱动多个下级逻辑器件,此问题会严重影响FPGA布线的稳定性,设计的时候要多加注意,此时采用的是复制寄存器策略。

举个例子:CLK为系统时钟,M为1MHz方波信号,由于M信号驱动的模块较多,所以M的扇出较多,为了减少扇出,用系统时钟采样,将M信号驱动7个D触发器,然后将7个D触发器的输出端分给7个模块,这样每个复制点(DUP0~DUP6)平均扇出变为原来的1/7,M的信号扇出变为7,这样就减少了每个信号的扇出,优化了逻辑,也提高了设计的整体性能。简而言之,就是将一路信号用D触发器和CLK将其分成两路信号,或者是更多路的信号,再让这些信号来驱动下面的各个模块。

高扇出有哪些危害?(从ASIC设计的角度讲的)
危害1:驱动能力下降,时序紧张
扇出过高也就是也就意味了负载电容过大,电路原理基础中,负载电容越大,充放电速度越慢,电平跳变所需要的时间增加,即驱动能力下降,时序更加紧张。面对高扇出的情况,后端工具通常会通过插入buffer增加驱动能力,然后插入buff又会增加延时,造成时序紧张。
危害2:不利于布局布线,会增加走线延时
高扇出的情况通常意味着负载end_point分布在block的各个位置。而驱动的start_point需要放置在相对应的中心位置,这就意味到start_point到end_points的走线延时较大,一旦时序紧张,后端工具需要花费很多时间去优化,往往结果还不理想。

在遇到信号高扇出时三种思路,对于普通信号可采用①寄存器复制或者②设置max_fanout属性优化;而对于复位信号,可③加入BUFG优化
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/477995.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode hot100 拆分整数

在本题目中,我们需要拆分一个整数n,让其拆分的整数积最大。因为每拆分一次都和之前上一次拆分有关系,比如拆分6可以拆成2x4,还可以拆成2x2x2,那么我们可以采用动态规划来做。 首先确定dp数组的含义,这里dp…

容器库(7)-std::map

std::map是一种有序关联容器&#xff0c;它包含具有唯一键的键值对。搜索、移除和插入的时间复杂度是 。底层通常是以红黑树实现的。 template<class Key,class T,class Compare std::less<Key>,class Allocator std::allocator<std::pair<const Key, T>&…

Gitlab CI/CD docker命令报错:/usr/bin/bash: line 136: docker:command not found

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

chrome版本117驱动下载路,解决版本不匹配问题

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…

数字化商品管理:革新鞋服零售模式,引领智能商业新时代

随着科技的快速发展&#xff0c;数字化浪潮席卷各行各业&#xff0c;鞋服零售企业亦不例外。在这个新时代&#xff0c;数字化商品管理不仅成为鞋服零售企业革新的关键&#xff0c;更是其引领智能商业浪潮的重要引擎。本文将围绕数字化商品管理如何深刻影响鞋服零售模式&#xf…

Java 21 新特性的扫盲级别初体验

一、前言 JDK 21 于 2023 年 9 月发布&#xff0c;作为目前讨论热度最高的JDK&#xff0c;虽然大家都开玩笑说你发任你发&#xff0c;我用Java8&#xff0c;但是作为一个Javaer&#xff0c;对JDK21的新特性还是要有所了解的。 以下是 JDK 21 的新功能列表&#xff1a; 虚拟线…

Java关键字大全

概览 以上是我们学习Java从小白到入门能够接触到的关键字。 下面整理一些我们刚开始学习Java会经常用到的关键字的用法概述&#xff1a; 一、本数据类型&#xff08;4类8种&#xff09; 类型种类&#xff1a; 四类八种整型byte,short,int,long 浮点型float,double字符型cha…

GA-kmedoid 遗传算法优化K-medoids聚类

遗传算法优化K-medoids聚类是一种结合了遗传算法和K-medoids聚类算法的优化方法。遗传算法是一种基于自然选择和遗传机制的随机优化算法&#xff0c;它通过模拟生物进化过程中的遗传、交叉、变异等操作来寻找问题的最优解。而K-medoids聚类算法是一种基于划分的聚类方法&#x…

Python:常见的运算符

一、算术运算符 算术在数学中可以直接运用的一些运算规则&#xff1a; ------- 加法运算 - ------- 减法运算 * ------- 乘法运算 / ------- 除法运算 强数据类型语言中/表示的整除运算 // ------ 整除 % ------ 取余运算 ** ------ 幂次方运算 >>> a 10 >>&…

【数据结构】13:表达式转换(中缀表达式转成后缀表达式)

思想&#xff1a; 从头到尾依次读取中缀表达式里的每个对象&#xff0c;对不同对象按照不同的情况处理。 如果遇到空格&#xff0c;跳过如果遇到运算数字&#xff0c;直接输出如果遇到左括号&#xff0c;压栈如果遇到右括号&#xff0c;表示括号里的中缀表达式已经扫描完毕&a…

业务流程图与功能流程图到底有什么区别?

先介绍一下业务流程图&#xff1a; 一、业务流程图 业务流程图(Transaction Flow Diagram&#xff0c;TFD)是一种描述管理系统内各单位、人员之间的业务关系、作业顺序和管理信息流向的图表。它用一些规定的符号及连线表示某个具体业务的处理过程&#xff0c;帮助分析人员找出…

基于Spring Boot的车辆管理系统,计算机毕业设计(带源码+论文)

源码获取地址&#xff1a; 码呢-一个专注于技术分享的博客平台一个专注于技术分享的博客平台,大家以共同学习,乐于分享,拥抱开源的价值观进行学习交流http://www.xmbiao.cn/resource-details/1759578742199496705