消息队列-RabbitMQ:MQ作用分类、RabbitMQ核心概念及消息生产消费调试

1、MQ 的相关概念

1)什么是 MQ

MQ (message queue),从字面意思上看,本质是个队列,FIFO 先入先出,只不过队列中存放的内容是 message 而已,还是一种跨进程的通信机制用于上下游传递消息。在互联网架构中,MQ 是一种非常常见的上下游 “逻辑解耦 + 物理解耦” 的消息通信服务使用了 MQ 之后,消息发送上游只需要依赖 MQ,不 用依赖其他服务

2)为什么要用 MQ

流量消峰

举个例子,如果订单系统最多能处理一万次订单,这个处理能力应付正常时段的下单时绰绰有余,正常时段我们下单一秒后就能返回结果。但是在高峰期,如果有两万次下单操作系统是处理不了的,只能限制订单超过一万后不允许用户下单。使用消息队列做缓冲,我们可以取消这个限制,把一秒内下的订单分散成一段时间来处理,这时有些用户可能在下单十几秒后才能收到下单成功的操作,但是比不能下单的体验要好。

应用解耦

以电商应用为例,应用中有订单系统、库存系统、物流系统、支付系统。用户创建订单后,如果耦合调用库存系统、物流系统、支付系统,任何一个子系统出了故障,都会造成下单操作异常。当转变成基于消息队列的方式后,系统间调用的问题会减少很多,比如物流系统因为发生故障,需要几分钟来修复。在 这几分钟的时间里,物流系统要处理的内存被缓存在消息队列中,用户的下单操作可以正常完成。当物流系统恢复后,继续处理订单信息即可,中单用户感受不到物流系统的故障,提升系统的可用性

异步处理

有些服务间调用是异步的,例如 A 调用 B,B 需要花费很长时间执行,但是 A 需要知道 B 什么时候可以执行完。

以前一般有两种方式,A 过一段时间去调用 B 的查询 api 查询。或者 A 提供一个 callback api,B 执行完之后调用 api 通知 A 服务。这两种方式都不是很优雅。

使用消息总线,可以很方便解决这个问题, A 调用 B 服务后,只需要监听 B 处理完成的消息,当 B 处理完成后,会发送一条消息给 MQ,MQ 会将此消息转发给 A 服务。这样 A 服务既不用循环调用 B 的查询 api,也不用提供 callback api。同样 B 服务也不用做这些操作,A 服务还能及时的得到异步处理成功的消息。

3)MQ 的分类

ActiveMQ

优点:单机吞吐量万级,时效性 ms 级,可用性高,基于主从架构实现高可用性,较低的概率丢失数据。

缺点:官方社区现在对 ActiveMQ 5.x 维护越来越少,高吞吐量场景较少使用。

Kafka

大数据的杀手锏,谈到大数据领域内的消息传输,则绕不开 Kafka,这款为大数据而生的消息中间件,以其百万级 TPS 的吞吐量名声大噪,迅速成为大数据领域的宠儿,在数据采集、传输、存储的过程中发挥着举足轻重的作用。目前已经被 LinkedIn,Uber, Twitter, Netflix 等大公司所采纳。

优点:性能卓越,单机写入 TPS 约在百万条 / 秒,最大的优点,就是吞吐量高时效性 ms 级,可用性非常高kafka 是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用消费者采用 Pull 方式获取消息,消息有序,通过控制能够保证所有消息被消费且仅被消费一次;有优秀的第三方 Kafka Web 管理界面 Kafka-Manager;在日志领域比较成熟,被多家公司和多个开源项目使用;功能支持:功能较为简单,主要支持简单的 MQ 功能,在大数据领域的实时计算以及日志采集被大规模使用

缺点Kafka 单机超过 64 个队列 / 分区,Load 会发生明显的飙高现象,队列越多,load 越高,发送消息响应时间变长使用短轮询方式,实时性取决于轮询间隔时间,消费失败不支持重试;支持消息顺序,但是一台代理宕机后,就会产生消息乱序,社区更新较慢。

RocketMQ

RocketMQ 出自阿里巴巴的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一 些改进。被阿里巴巴广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog 分发等场景。

优点:单机吞吐量十万级,可用性非常高,分布式架构,消息可以做到 0 丢失,MQ 功能较为完善,还是分布式的,扩展性好,支持 10 亿级别的消息堆积,不会因为堆积导致性能下降。

缺点:支持的客户端语言不多,目前是 java 及 c++,其中 c++ 不成熟;社区活跃度一般,没有在 MQ 核心中去实现 JMS 等接口,有些系统要迁移需要修改大量代码。

RabbitMQ

2007 年发布,是一个在 AMQP (高级消息队列协议) 基础上完成的,可复用的企业消息系统,是当前最主流的消息中间件之一

优点由于 erlang 语言的高并发特性,性能较好;吞吐量到万级,MQ 功能比较完备,健壮、稳定、易用、跨平台、支持多种语言。如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP 等,AJAX 文档齐全;开源提供的管理界面非常棒,用起来很好用,社区活跃度高;更新频率相当高

**缺点:**商业版需要收费,学习成本较高。

4)MQ 的选择

Kafka

Kafka 主要特点是基于 Pull 的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集和传输,适合产生大量数据的互联网服务的数据收集业务大型公司建议可以选用,如果有日志采集功能,肯定是首选 kafka 了

RocketMQ

天生为金融互联网领域而生,对于可靠性要求很高的场景,尤其是电商里面的订单扣款,以及业务削峰,在大量交易涌入时,后端可能无法及时处理的情况。RoketMQ 在稳定性上可能更值得信赖,这些业务场景在阿里双 11 已经经历了多次考验,如果你的业务有上述并发场景,建议可以选择 RocketMQ。

RabbitMQ

结合 erlang 语言本身的并发优势,性能好时效性微秒级,社区活跃度也比较高,管理界面用起来十分方便,如果你的数据量没有那么大,中小型公司优先选择功能比较完备的 RabbitMQ。

2、RabbitMQ

1)RabbitMQ 的概念

RabbitMQ 是一个消息中间件它接受并转发消息。你可以把它当做一个快递站点,当你要发送一个包裹时,你把你的包裹放到快递站,快递员最终会把你的快递送到收件人那里,按照这种逻辑 RabbitMQ 是 一个快递站,一个快递员帮你传递快件。

RabbitMQ 与快递站的主要区别在于,它不处理快件而是接收,存储和转发消息数据

2)四大核心概念

生产者产生数据发送消息的程序

交换机:是 RabbitMQ 非常重要的一个部件,一方面它接收来自生产者的消息,另一方面它将消息推送到队列中。交换机必须确切知道如何处理它接收到的消息,是将这些消息推送到特定队列还是推送到多个队列,亦或者是把消息丢弃,这个得有交换机类型决定

队列队列是 RabbitMQ 内部使用的一种数据结构,尽管消息流经 RabbitMQ 和应用程序,但它们只能存储在队列中队列仅受主机的内存和磁盘限制的约束,本质上是一个大的消息缓冲区。许多生产者可以将消息发送到一个队列,许多消费者可以尝试从一个队列接收数据

消费者大多时候是一个等待接收消息的程序。请注意生产者,消费者和消息中间件很多时候并不在同一机器上。同一个应用程序既可以是生产者又是可以是消费者。

3)各个名词介绍

在这里插入图片描述

Broker:接收和分发消息的应用,RabbitMQ Server 就是 Message Broker。

Virtual host:出于多用户和安全因素设计的,把 AMQP 的基本组件划分到一个虚拟的分组中,类似于网络中的 namespace 概念。当多个不同的用户使用同一个 RabbitMQ server 提供的服务时,可以划分出多个 vhost,每个用户在自己的 vhost 创建 exchange/queue 等。

Connection:publisher/consumer 和 broker 之间的 TCP 连接。

Channel:如果每一次访问 RabbitMQ 都建立一个 Connection,在消息量大的时候建立 TCP Connection 的开销将是巨大的,效率也较低。Channel 是在 connection 内部建立的逻辑连接,如果应用程序支持多线程,通常每个 thread 创建单独的 channel 进行通讯,AMQP method 包含了 channel id 帮助客户端和 message broker 识别 channel,所以 channel 之间是完全隔离的。Channel 作为轻量级的 Connection 极大减少了操作系统建立 TCP connection 的开销。

Exchange:message 到达 broker 的第一站,根据分发规则,匹配查询表中的 routing key,分发消息到 queue 中去。常用的类型有:direct (point-to-point), topic (publish-subscribe) and fanout (multicast)。

Queue:消息最终被送到这里等待 consumer 取走。

Binding:exchange 和 queue 之间的虚拟连接,binding 中可以包含 routing key,Binding 信息被保存到 exchange 中的查询表中,用于 message 的分发依据。

3、Hello world

在此测试之前,大家得先把RabbitMQ部署到三台服务器/或者三台虚拟机上,笔者是用的是三台虚拟机

连接的时候,需要开启 5672 端口。

依赖

pom.xml:

<!--指定 jdk 编译版本-->
<build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><configuration><source>8</source><target>8</target></configuration></plugin></plugins>
</build>
<dependencies><!--rabbitmq 依赖客户端--><dependency><groupId>com.rabbitmq</groupId><artifactId>amqp-client</artifactId><version>5.8.0</version></dependency><!--操作文件流的一个依赖--><dependency><groupId>commons-io</groupId><artifactId>commons-io</artifactId><version>2.6</version></dependency>
</dependencies>

1)消息生产者

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

测试效果:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

打开web管理界面查看

在这里插入图片描述

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;public class Producer {private final static String QUEUE_NAME = "hello";public static void main(String[] args) throws Exception {//创建一个连接工厂ConnectionFactory factory = new ConnectionFactory();factory.setHost("42.192.149.23");factory.setUsername("admin");factory.setPassword("123456");//channel 实现了自动 close 接口 自动关闭 不需要显示关闭//创建连接Connection connection = factory.newConnection();//获取信道Channel channel = connection.createChannel();/*** 生成一个队列* 1.队列名称* 2.队列里面的消息是否持久化 也就是是否用完就删除* 3.该队列是否只供一个消费者进行消费 是否进行共享 true 可以多个消费者消费* 4.是否自动删除 最后一个消费者端开连接以后 该队列是否自动删除 true 自动删除* 5.其他参数*/channel.queueDeclare(QUEUE_NAME, false, false, false, null);String message = "hello world";/*** 发送一个消息* 1.发送到那个交换机* 2.路由的 key 是哪个* 3.其他的参数信息* 4.发送消息的消息体*/channel.basicPublish("", QUEUE_NAME, null, message.getBytes());System.out.println("消息发送完毕");}}

2)消息消费者

获取 “生产者” 发出的消息:

在这里插入图片描述

在这里插入图片描述

测试效果:

在这里插入图片描述

只需要消息体

在这里插入图片描述

消息都是发一次,就完了,所以需要重启生产者,消费者再拿

在这里插入图片描述

import com.rabbitmq.client.*;public class Consumer {private final static String QUEUE_NAME = "hello";public static void main(String[] args) throws Exception {ConnectionFactory factory = new ConnectionFactory();factory.setHost("42.192.149.23");factory.setUsername("admin");factory.setPassword("123456");Connection connection = factory.newConnection();Channel channel = connection.createChannel();System.out.println("等待接收消息.........");//推送的消息如何进行消费的接口回调DeliverCallback deliverCallback = (consumerTag, delivery) -> {String message = new String(delivery.getBody());System.out.println(message);};//取消消费的一个回调接口 如在消费的时候队列被删除掉了CancelCallback cancelCallback = (consumerTag) -> {System.out.println("消息消费被中断");};/*** 消费者消费消息 - 接受消息* 1.消费哪个队列* 2.消费成功之后是否要自动应答 true 代表自动应答 false 手动应答* 3.消费者未成功消费的回调* 4.消息被取消时的回调*/channel.basicConsume(QUEUE_NAME, true, deliverCallback, cancelCallback);}}

消息队列-RabbitMQ:MQ作用分类、RabbitMQ核心概念及消息生产消费调试 到此完结,笔者归纳、创作不易,大佬们给个3连再起飞吧

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/478595.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[杂记]mmdetection3.x中的数据流与基本流程详解(数据集读取, 数据增强, 训练)

之前跑了一下mmdetection 3.x自带的一些算法, 但是具体的代码细节总是看了就忘, 所以想做一些笔记, 方便初学者参考. 其实比较不能忍的是, 官网的文档还是空的… 这次想写其中的数据流是如何运作的, 包括从读取数据集的样本与真值, 到数据增强, 再到模型的forward当中. 0. MMDe…

新增长100人研讨会:快消零售专场探讨招商加盟数字化转型实战

2024年2月2日下午&#xff0c;一场由纷享销客与杨国福集团联合主办的招商加盟数字化转型研讨会在上海成功举办。本次研讨会汇聚了众多快消零售业界的领军人物&#xff0c;共同探讨行业未来的新增长点。 会议伊始&#xff0c;杨国福集团数字化中心负责人王林林发表了主题演讲&a…

三防平板丨手持工业平板丨ONERugged工业三防平板丨推动数字化转型

随着科技的发展&#xff0c;数字化转型已经成为企业转型升级的必由之路。而在数字化转型中&#xff0c;三防平板作为一种重要的工具&#xff0c;可以极大地推动企业的数字化转型。本文将从以下几个方面探讨三防平板如何推动数字化转型。 一、提高工作效率 ONERugged加固平板的…

Android 11.0 mtp在锁屏模式和息屏时禁止访问mtp文件夹功能实现

1.前言 在11.0的系统rom产品定制化开发中,由于系统对于mtp模式访问文件夹没有限制,就是在锁屏息屏状态下也是可以访问文件夹的,由于产品的需要 要求在锁屏和息屏的情况下,禁止访问文件夹,就是需要实现如图效果 2.mtp在锁屏模式和息屏时禁止访问mtp文件夹功能实现的核心…

搜索算法(算法竞赛、蓝桥杯)--BFS八数码难题、抓住那头牛、魔板问题

1、B站视频链接&#xff1a;B14 BFS 八数码难题_哔哩哔哩_bilibili 题目链接&#xff1a;八数码难题 - 洛谷 #include <bits/stdc.h> using namespace std; char c; string str; unordered_map<string,int> d;//记录步数 queue<string> q; int dx[4]{-1,0,1…

使用【Python+Appium】实现自动化测试

一、环境准备 1.脚本语言&#xff1a;Python3.x IDE&#xff1a;安装Pycharm 2.安装Java JDK 、Android SDK 3.adb环境&#xff0c;path添加E:\Software\Android_SDK\platform-tools 4.安装Appium for windows&#xff0c;官网地址 Redirecting 点击下载按钮会到GitHub的…

深度学习发展的艺术

将人类直觉和相关数学见解结合后&#xff0c;经过大量研究试错后的结晶&#xff0c;产生了一些成功的深度学习模型。 深度学习模型的进展是理论研究与实践经验相结合的产物。科学家和工程师们借鉴了人类大脑神经元工作原理的基本直觉&#xff0c;并将这种生物学灵感转化为数学模…

基于Springboot的校园求职招聘系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的校园求职招聘系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…

计算机视觉的应用23-OpenAI发布的文本生成视频大模型Sora的原理解密

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下计算机视觉的应用23-OpenAI发布的文本生成视频大模型Sora的原理解密。本文概况性地将Sora模型生成视频主要分为三个步骤&#xff1a;视频压缩网络、空间时间潜在补丁提取以及视频生成的Transformer模型。 文章目录…

OSQP文档学习

OSQP官方文档 1 QSQP简介 OSQP求解形式为的凸二次规划&#xff1a; x ∈ R n x∈R^n x∈Rn&#xff1a;优化变量 P ∈ S n P∈S^n_ P∈Sn​&#xff1a;半正定矩阵 特征 &#xff08;1&#xff09;高效&#xff1a;使用了一种自定义的基于ADMM的一阶方法&#xff0c;只需…

Compose 1.6 发布:性能大升级、拖放新功能、文本新变化...

翻译自&#xff1a; https://android-developers.googleblog.com/2024/01/whats-new-in-jetpack-compose-january-24-release.html 基于 1 月 24 号的 Compose 发行计划&#xff0c;我们正式推出了 Jetpack Compose 1.6 版本。 作为 Android 平台备受推崇的原生 UI 工具包&…

gin源码实战 day1

gin框架源码实战day1 Radix树 这个路由信息&#xff1a; r : gin.Default()r.GET("/", func1) r.GET("/search/", func2) r.GET("/support/", func3) r.GET("/blog/", func4) r.GET("/blog/:post/", func5) r.GET("/…