Backtrader 量化回测实践(1)—— 架构理解和MACD/KDJ混合指标

Backtrader 量化回测实践(1)—— 架构理解和MACD/KDJ混合指标

按Backtrader的架构组织,整理了一个代码,包括了Backtrader所有的功能点,原来总是使用SMA最简单的指标,现在稍微增加了复杂性,用MACD和KDJ两个指标综合作为操作指标,因此买入卖出操作就比较少,还有就是买入的时候,采用了限价单,整个的交易频率不高,所以图示交易点比较少,也符合多看少动的交易理念。
通过代码结合架构图,可以充分去理解整个Backtrader的功能设计思路,前面一个功能一个功能学习理解,现在把所有的功能综合在一起进行展示,小有成就感。

回测的操作过程 :

  • #1.实例初始化
  • #2.加载数据 Data feeds
  • #3.加载策略 Strategy
  • #4.加载分析器 Analyzers
  • #5.加载观察者 Observers
  • #6.设置仓位管理 Sizers
  • #7.设置佣金管理 Commission
  • #8.设置初始资金
  • #9.启动回测
  • #10.回测结果

1. Backtrader的架构

在这里插入图片描述

2. 代码

import pandas as pd
import numpy as npimport common # get data
import datetime
import backtrader as bt# 定义Observer
class OrderObserver(bt.observer.Observer):lines = ('created', 'expired',)# 做图参数设置plotinfo = dict(plot=True, subplot=True, plotlinelabels=True)# 创建工单 * 标识,过期工单 方块 标识plotlines = dict(created=dict(marker='*', markersize=8.0, color='lime', fillstyle='full'),expired=dict(marker='s', markersize=8.0, color='red', fillstyle='full'))# 处理 Linesdef next(self):for order in self._owner._orderspending:if order.data is not self.data:continueif not order.isbuy():continue# Only interested in "buy" orders, because the sell orders# in the strategy are Market orders and will be immediately# executedif order.status in [bt.Order.Accepted, bt.Order.Submitted]:self.lines.created[0] = order.created.priceelif order.status in [bt.Order.Expired]:self.lines.expired[0] = order.created.price# 定义策略
class MACD_KDJStrategy(bt.Strategy):# 策略参数params = (('highperiod', 9),('lowperiod', 9),('kperiod', 3),('dperiod', 3),('me1period', 12),('me2period', 26),('signalperiod', 9),('limitperc', 1.0), # 限价比例 ,下跌1个百分点才买入,目的可以展示Observer的过期单('valid', 7), # 限价周期('print', False),('counter', 0),  # 计数器)def log(self, txt, dt=None):""" Logging function fot this strategy"""dt = dt or self.datas[0].datetime.date(0)if self.params.print:print("%s, %s" % (dt.isoformat(), txt))def __init__(self):# 初始化全局变量,备用self.dataclose = self.datas[0].closeself.dataopen = self.datas[0].openself.datahigh = self.datas[0].highself.datalow = self.datas[0].lowself.volume = self.datas[0].volumeself.order = Noneself.buyprice = Noneself.buycomm = None# N个交易日内最高价self.highest = bt.indicators.Highest(self.data.high, period=self.p.highperiod)# N个交易日内最低价self.lowest = bt.indicators.Lowest(self.data.low, period=self.p.lowperiod)# 计算rsv值 RSV=(CLOSE- LOW) / (HIGH-LOW) * 100# 如果被除数0 ,为Noneself.rsv = 100 * bt.DivByZero(self.data_close - self.lowest, self.highest - self.lowest, zero=None)# 计算rsv的N个周期加权平均值,即K值self.K = bt.indicators.EMA(self.rsv, period=self.p.kperiod, plot=False)# D值=K值 的N个周期加权平均值self.D = bt.indicators.EMA(self.K, period=self.p.dperiod, plot=False)# J=3*K-2*Dself.J = 3 * self.K - 2 * self.D# MACD策略参数me1 = bt.indicators.EMA(self.data, period=self.p.me1period, plot=True)me2 = bt.indicators.EMA(self.data, period=self.p.me2period, plot=True)self.macd = me1 - me2self.signal = bt.indicators.EMA(self.macd, period=self.p.signalperiod)bt.indicators.MACDHisto(self.data)# 订单通知处理def notify_order(self, order):if order.status in [order.Submitted, order.Accepted]:returnif order.status in [order.Completed]:if order.isbuy():self.log("BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f"% (order.executed.price, order.executed.value, order.executed.comm))self.buyprice = order.executed.priceself.buycomm = order.executed.commself.bar_executed_close = self.dataclose[0]else:self.log("SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f"% (order.executed.price, order.executed.value, order.executed.comm))self.bar_executed = len(self)elif order.status in [order.Canceled, order.Margin, order.Rejected]:self.log("Order Canceled/Margin/Rejected")self.order = None# 交易通知处理def notify_trade(self, trade):if not trade.isclosed:returnself.log("OPERATION PROFIT, GROSS %.2f, NET %.2f" % (trade.pnl, trade.pnlcomm))# 策略执行def next(self):self.log("Close, %.2f" % self.dataclose[0])if self.order:return# 空仓中,开仓买入if not self.position:# 买入基于MACD策略condition1 = self.macd[-1] - self.signal[-1] # 昨天低于signalcondition2 = self.macd[0] - self.signal[0] # 今天高于signal# 买入基于KDJ策略 K值大于D值,K线向上突破D线时,为买进信号。下跌趋势中,K值小于D值,K线向下跌破D线时,为卖出信号。condition3 = self.K[-1] - self.D[-1] # 昨天J低于Dcondition4 = self.K[0] - self.D[0]   # 今天J高于Dif condition1 < 0 and condition2 > 0 and condition3 < 0 and condition4 > 0 :self.log('BUY CREATE, %.2f' % self.dataclose[0])plimit = self.data.close[0] * (1.0 - self.p.limitperc / 100.0)valid = self.data.datetime.date(0) + datetime.timedelta(days=self.p.valid)self.log('BUY CREATE, %.2f' % plimit)# 限价购买self.buy(exectype=bt.Order.Limit, price=plimit, valid=valid)else:# 卖出基于MACD策略condition1 = self.macd[-1] - self.signal[-1]condition2 = self.macd[0] - self.signal[0]# 卖出基于KDJ策略condition3 = self.K[-1] - self.D[-1]condition4 = self.D[0] - self.D[0]if condition1 > 0 and condition2 < 0 and (condition3 > 0 or condition4 < 0):self.log("SELL CREATE, %.2f" % self.dataclose[0])self.order = self.sell()def start(self):# 从0 开始# self.params.counter += 1self.log('Strategy start %s' % self.params.counter)def nextstart(self):self.params.counter += 1self.log('Strategy nextstart %s' % self.params.counter)def prenext(self):self.params.counter += 1self.log('Strategy prenext  %s' % self.params.counter)def stop(self):self.params.counter += 1self.log('Strategy stop  %s' % self.params.counter)self.log('Ending Value %.2f' % ( self.broker.getvalue()))if __name__ == "__main__":tframes = dict(days=bt.TimeFrame.Days,weeks=bt.TimeFrame.Weeks,months=bt.TimeFrame.Months,years=bt.TimeFrame.Years)#1.实例初始化cerebro = bt.Cerebro()# 2.加载数据 Data feeds# 加载数据到模型中,由dataframe 到 Lines 数据类型,查询10年数据到dataframestock_df = common.get_data('000858.SZ','2010-01-01','2021-01-01')# 加载5年数据进行分析start_date = datetime.datetime(2016, 1, 1)  # 回测开始时间end_date = datetime.datetime(2020, 12, 31)  # 回测结束时间# bt数据转换data = bt.feeds.PandasData(dataname=stock_df, fromdate=start_date, todate=end_date)# bt加载数据cerebro.adddata(data)#3.加载策略 Strategycerebro.addstrategy(MACD_KDJStrategy)#4.加载分析器 Analyzerscerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='mysharpe')cerebro.addanalyzer(bt.analyzers.DrawDown,_name = 'mydrawdown')cerebro.addanalyzer(bt.analyzers.AnnualReturn,_name = 'myannualreturn')#5.加载观察者 Observerscerebro.addobserver(OrderObserver)#6.设置仓位管理 Sizerscerebro.addsizer(bt.sizers.FixedSize, stake=100)#7.设置佣金管理 Commissioncerebro.broker.setcommission(commission=0.002)#8.设置初始资金cerebro.broker.setcash(100000)print("Starting Portfolio Value: %.2f" % cerebro.broker.getvalue())#9.启动回测checkstrats = cerebro.run()#数据源0 返回值处理checkstrat = checkstrats[0]#10.回测结果print("Final Portfolio Value: %.2f" % cerebro.broker.getvalue())print('夏普率:')for k, v in checkstrat.analyzers.mysharpe.get_analysis().items():print(k, ':', v)print('最大回测:')for k, v in checkstrat.analyzers.mydrawdown.get_analysis()['max'].items():print('max ', k, ':', v)print('年化收益率:')for year, ann_ret in checkstrat.analyzers.myannualreturn.get_analysis().items():print(year, ':', ann_ret)#11.回测图示cerebro.plot()

3.输出

Starting Portfolio Value: 100000.00
Final Portfolio Value: 109320.46
夏普率:
sharperatio : 0.24167200140493122
最大回测:
max  len : 323
max  drawdown : 4.220391363516371
max  moneydown : 4426.0
年化收益率:
2016 : 0.0
2017 : 0.03684790760000012
2018 : -0.027969386625977366
2019 : 0.07656254422728326
2020 : 0.007551367384477592

4.图示

在这里插入图片描述
做个有趣的猜测,如果对市场上所有的stock代码按程序的遍历一遍,不知道盈亏情况,比例如何?另外一个关心的就是消耗时间?

如果大家有兴趣知道结果,点赞收藏超过100 ,就做个Excel ,给大家看看效果。

仅供学习参考,不做交易操作依据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/479243.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

跟国外客户交流时怎么把英语说的更地道?

只要把中文逐字逐句翻译成对应的英文&#xff0c;就能讲好英语了吗&#xff1f; 并不&#xff01;那样的话我们只需要Google翻译不就可以了。 说英语时&#xff0c;要把思维也调整到英语模式&#xff0c;才能够说得流畅、地道。 01 对初次见面的老外&#xff0c;问他叫什么&a…

三防平板电脑在工程车上的应用|亿道三防onerugged

亿道三防onerugged系列产品中的M10T平板电脑&#xff0c;它以其卓越的性能和多功能的设计&#xff0c;为工程车智能天车管理系统带来了独特的应用体验。 首先&#xff0c;M10T平板电脑在工程智能天车管理系统中的应用展现了其卓越的实用性。工程车智能天车管理系统需要一个可靠…

自动驾驶中之定位总结

1 前言2 典型的单个定位方式2.1 基于通信的定位方法2.1.1 GNSS 全球卫星导航系统2.1.1.1 gnss的优点与缺点2.1.1.2 gnss定位技术2.1.1.2.1 RTK定位技术2.1.1.2.2 PPP定位技术 2.1.1.2 gnss定位技术总结 2.1.2 车联网定位 2.1 基于航位推算的定位方法2.1.1 惯性测试单元定位IMU2…

从入门到精通:AI绘画与修图实战指南

&#x1f482; 个人网站:【 海拥】【神级代码资源网站】【办公神器】&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交流的小伙伴&#xff0c;请点击【全栈技术交流群】 在这篇文章中&#xff0c;我们将深入探讨如何利…

【Web前端笔记09】浮动与定位

09 浮动与定位 一、浮动 二、清除浮动的影响 三、display属性 四、position定位 1、静态定位static 2、relative 相对定位&#xff08;自恋型&#xff09; 3、absolute 绝对定位 4、fixed 固定定位 09 浮动与定位 一、浮动 定义&#xff1a;定义元素框相对于…

idea 2022.3 配置svn插件

配置中遇到的问题 1.没有安装svn.exe这个 原本是安装了TortoiseSVN 但没有安装客户端命令需要补充这个客户端命令的安装 才能引用 2.路径引用的问题 原本是在 D:\Program Files\TortoiseSVN 这里存在空格 会产生问题 网上说的使用progra~1 或者 加双引号 均不能成功 最…

unity——shader入门知识点 学习笔记【个人复习向/侵删/有不足之处欢迎斧正】

零、不同图形接口程序对Shader开发的影响&#xff1a; 1.渲染管线(流水线)和图形接口程序的关系&#xff1a;图形接口程序(OpenGL、 DX等)提供了对渲染管线(流水线)的控制和管理功能&#xff0c;它是开发者和硬件打交道的中间层 2. Shader和图形接口程序的关系&#xf…

Linux定时任务调度

Linux定时任务调度 crond 任务调度 crontab 进行定时任务的设置 介绍 任务调度&#xff1a;是指系统在某个时间执行的特定的命令或程序。 任务调度分类&#xff1a;系统工作&#xff1a;有些重要的工作必须周而复始地执行。如病毒扫描等 个别用户工作&#xff1a;个别用户可能…

《Solidity 简易速速上手小册》第8章:高级 Solidity 概念(2024 最新版)

文章目录 8.1 高级数据类型和结构8.1.1 基础知识解析更深入的理解实际操作技巧 8.1.2 重点案例&#xff1a;构建一个去中心化身份系统案例 Demo&#xff1a;创建去中心化身份系统案例代码DecentralizedIdentityContract.sol 测试和验证拓展案例 8.1.3 拓展案例 1&#xff1a;管…

SWAT-MODFLOW地表水与地下水耦合实践技术应用

耦合模型被应用到很多科学和工程领域来改善模型的性能、效率和结果&#xff0c;SWAT作为一个地表水模型可以较好的模拟主要的水文过程&#xff0c;包括地表径流、降水、蒸发、风速、温度、渗流、侧向径流等&#xff0c;但是对于地下水部分的模拟相对粗糙&#xff0c;考虑到SWAT…

【C语言】Leetcode 27.移除元素

一、代码实现 如果不考虑O(1)的空间复杂度的话我们可以再创建数组来进行遍历解决该问题&#xff0c;但是在要求之下该做法无法通过。于是我们可以用双指针来解决&#xff0c;最坏的情况时间复杂度为O(N)。 int removeElement(int* nums, int numsSize, int val) {int src 0;…

leetcode hot 100最后一块石头重量Ⅱ

在本题中&#xff0c;我们可以知道&#xff0c;是要求最后石头返还的重量&#xff0c;也就是&#xff0c;将整个数组分割成两个子集&#xff0c;求让两个子集的差值最小。这和上一道分割整数集类似&#xff0c;只是需要我们返回差值。所以我们采用动态规划01背包来做&#xff0…