数据结构:跳表讲解

跳表

    • 1.什么是跳表-skiplist
      • 1.1简介
      • 1.2设计思路
    • 2.跳表的效率分析
    • 3.跳表实现
      • 3.1类成员设计
      • 3.2查找
      • 3.3插入
      • 3.4删除
      • 3.5完整代码
    • 4.skiplist跟平衡搜索树和哈希表的对比

1.什么是跳表-skiplist

1.1简介

skiplist本质上也是一种查找结构,用于解决算法中的查找问题,跟平衡搜索树和哈希表的价值是一样的,可以作为key或者key/value的查找模型。后面我会进行比对。

skiplist是由William Pugh发明的,最早出现于他在1990年发表的论文《Skip Lists: A
Probabilistic Alternative to Balanced Trees》。

skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。如果是一个有序的链表,查找数据的时间复杂度是O(N)。


1.2设计思路


(1)假如我们每相邻两个节点升高一层,增加一个指针,让指针指向下下个节点,如下图所示。这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半。由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了,需要比较的节点数大概只有原来的一半(后面讲为什么)

在这里插入图片描述
这样设计利于查找,查找规则为:

  1. cur表示当前节点,nextV为节点指针数组,j表示下标,key为要查找的值。 其中cur一开始为哨兵节点,j为顶部下标
  2. 从cur位置向右看,如果key大于右边,就直接向右走,即更新cur为右节点
    (即cur = cur->nextV[j])。
  3. 如果key小于右边或者右边为空,直接向下走,即让j减一
  4. 右边等于key找到。
  5. 不存在的情况,j最后会走到-1(看后面图解)。

查找存在的情况:
在这里插入图片描述

查找不存在的情况:
在这里插入图片描述


(2)以此类推,我们可以在第二层新产生的链表上,继续为每相邻的两个节点升高一层,增加一个指针,从而产生第三层链表。如下图,这样搜索效率就进一步提高了。

在这里插入图片描述


(3)skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似二分查找,使得查找的时间复杂度可以降低到O(log n)。但是这个结构在插入删除数据的时候有很大的问题,插入或者删除一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新退化成O(n)


(4)skiplist的设计为了避免这种问题,做了一个大胆的处理,不再严格要求对应比例关系,而是插入一个节点的时候随机出一个层数。这样每次插入和删除都不需要考虑其他节点的层数,这样就好处理多了。细节过程入下图(插入和删除过程后面详细讲,现在只需知道随机层数一样可行):

在这里插入图片描述



2.跳表的效率分析

上面我们说到,skiplist插入一个节点时随机出一个层数,听起来怎么这么随意,如何保证搜索时的效率呢?

这里首先要细节分析的是这个随机层数是怎么来的。一般跳表会设计一个最大层数maxLevel的限制,其次会设置一个多增加一层的概率p。那么计算这个随机层数的代码如下:

int RandomLevel()
{int level = 1;//RAND_MAX为rand函数可生成的最大值//即rand()落到[0, RAND_MAX * _p]的概率为_pwhile(rand() < RAND_MAX * _p){level++;}return level;}

根据前面RandomLevel(),我们很容易看出,产生越高的节点层数,概率越低。定量的分析如下:

  • 节点层数至少为1。而大于1的节点层数,满足一个概率分布。
  • 节点层数恰好等于1的概率为1-p(即第一次就失败)。
  • 节点层数大于等于2的概率为p,而节点层数恰好等于2的概率为p(1-p)(第一次成功,第二次失败)。
  • 节点层数大于等于3的概率为p^2, 而节点层数恰好等于3的概率为p^2*(1-p)。
  • 节点层数大于等于4的概率为p^3, 而节点层数恰好等于4的概率为p^3*(1-p)。
  • ……

因此,一个节点的平均层数(也即包含的平均指针数目),计算如下:
在这里插入图片描述

现在很容易计算出:

  • 当p=1/2时,每个节点所包含的平均指针数目为2;
  • 当p=1/4时,每个节点所包含的平均指针数目为1.33。
  • p越大,平均层数越多,时间效率就越快,但太大可能导致空间浪费,故一般都会限制最大层数。

跳表的平均时间复杂度为O(logN),我会用图解来帮助大家理解大概,但完整推导的过程较为复杂,需要有一定的数学功底,有兴趣的同学,可以参考以下文章中的讲解:

铁蕾大佬的博客:Redis内部数据结构详解(6)——skiplist

在这里插入图片描述



3.跳表实现

本文跳表实现以本题为准:设计跳表

3.1类成员设计

//跳表节点
struct SkiplistNode
{SkiplistNode(int val, int level){_val = val;_nextV.resize(level, nullptr); }int _val;  //节点值vector<SkiplistNode*> _nextV;  //指针数组
};//跳表
class Skiplist {
public:typedef SkiplistNode Node;Skiplist() {srand(time(0));  //设置随机数种子_head = new Node(-1, 1);}double _p = 0.25;  //增加层数的概率int _maxLevel = 32;  //限制最大层数Node* _head;  //哨兵头节点,存储的是无效数据//头节点从一层开始,后面生成了更高层数节点在扩容,减少不必要的查询工作
};

3.2查找

参照设计思路里面讲的即可

bool search(int target) 
{int level = _head->_nextV.size() - 1;  //下标从顶部开始Node* cur = _head;  //从哨兵位开始while(level >= 0){//大于,跳到下个节点//小于或者空,向下走if(cur->_nextV[level] && cur->_nextV[level]->_val < target)  {cur = cur->_nextV[level];}else if(!cur->_nextV[level] || cur->_nextV[level]->_val > target)  {level--;}else  //找到了{return true;}}return false;
}

3.3插入

思路很简单,假设当前插入节点有x层,只需要找到这x层每一层对应的前置节点,然后做简单的链接工作即可。
在这里插入图片描述

//找前置节点
vector<SkiplistNode*> GetPrev(int num)
{//核心是找到每一层的前置节点//本题允许冗余int level = _head->_nextV.size() - 1;vector<SkiplistNode*> prevV(level + 1, nullptr);Node* cur = _head;while(level >= 0){//大于,跳到下个节点//小于或者空,向下走if(cur->_nextV[level] && cur->_nextV[level]->_val < num)  {cur = cur->_nextV[level];}else  {prevV[level] = cur;level--;}}return prevV;
}//插入节点
void add(int num) {vector<SkiplistNode*> prevV = GetPrev(num);//生成节点int n = RandomLevel();Node* newnode = new Node(num, n);if(n > _head->_nextV.size())   //节点层数超过当前最大{_head->_nextV.resize(n, nullptr);prevV.resize(n, _head);}//链接节点for(int i = 0; i < n; i++){newnode->_nextV[i] = prevV[i]->_nextV[i];prevV[i]->_nextV[i] = newnode;}
}

3.4删除

删除大体分两种情况:

  1. 存在该节点,思路与插入类似,假设当前删除节点有x层,只需要找到这x层每一层对应的前置节点,然后做简单的链接工作即可。
  2. 不存在该节点,那找前置节点的时候第0层的右边要么是空,要么就不是目标值

在这里插入图片描述

删除还有个可优化的点,不做也不影响正确性:
在这里插入图片描述

bool erase(int num) {vector<SkiplistNode*> prevV = GetPrev(num);//随机生成至少有一层节点if(prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num)  //不存在{return false;}else {//记录待删除的节点SkiplistNode* del = prevV[0]->_nextV[0];for(int i = 0; i < del->_nextV.size(); i++){prevV[i]->_nextV[i] = del->_nextV[i];}delete del;//这里不影响正确性,对头节点的多余空间做处理int j = _head->_nextV.size() - 1;while(j >= 0){if(_head->_nextV[j] == nullptr){j--;}else{break;}}_head->_nextV.resize(j + 1);return true;}
}

3.5完整代码

struct SkiplistNode
{SkiplistNode(int val, int level){_val = val;_nextV.resize(level, nullptr); }int _val;vector<SkiplistNode*> _nextV;
};class Skiplist {
public:typedef SkiplistNode Node;Skiplist() {srand(time(0));_head = new Node(-1, 1);}bool search(int target) {int level = _head->_nextV.size() - 1;Node* cur = _head;while(level >= 0){//大于,跳到下个节点//小于或者空,向下走if(cur->_nextV[level] && cur->_nextV[level]->_val < target)  {cur = cur->_nextV[level];}else if(!cur->_nextV[level] || cur->_nextV[level]->_val > target)  {level--;}else  //找到了{return true;}}return false;}vector<SkiplistNode*> GetPrev(int num){//核心是找到每一层的前置节点//本题允许冗余int level = _head->_nextV.size() - 1;vector<SkiplistNode*> prevV(level + 1, nullptr);Node* cur = _head;while(level >= 0){//大于,跳到下个节点//小于或者空,向下走if(cur->_nextV[level] && cur->_nextV[level]->_val < num)  {cur = cur->_nextV[level];}else  {prevV[level] = cur;level--;}}return prevV;}void add(int num) {vector<SkiplistNode*> prevV = GetPrev(num);//链接节点int n = RandomLevel();Node* newnode = new Node(num, n);if(n > _head->_nextV.size()){_head->_nextV.resize(n, nullptr);prevV.resize(n, _head);}for(int i = 0; i < n; i++){newnode->_nextV[i] = prevV[i]->_nextV[i];prevV[i]->_nextV[i] = newnode;}}bool erase(int num) {vector<SkiplistNode*> prevV = GetPrev(num);//随机生成至少有一层节点if(prevV[0]->_nextV[0] == nullptr || prevV[0]->_nextV[0]->_val != num)  //不存在{return false;}else {//记录待删除的节点SkiplistNode* del = prevV[0]->_nextV[0];for(int i = 0; i < del->_nextV.size(); i++){prevV[i]->_nextV[i] = del->_nextV[i];}delete del;//这里不影响正确性,对头节点的多余空间做处理int j = _head->_nextV.size() - 1;while(j >= 0){if(_head->_nextV[j] == nullptr){j--;}else{break;}}_head->_nextV.resize(j + 1);return true;}}int RandomLevel(){int level = 1;while(rand() < RAND_MAX * _p){level++;}return level;}double _p = 0.25;int _maxLevel = 32;Node* _head;
};



4.skiplist跟平衡搜索树和哈希表的对比

  1. skiplist相比平衡搜索树(AVL树和红黑树)对比,都可以做到遍历数据有序,时间复杂度也差不多
    skiplist的优势是:
    a、skiplist实现简单,容易控制。平衡树增删查改遍历都更复杂。
    b、skiplist的额外空间消耗更低。平衡树节点存储每个值有三叉链,平衡因子/颜色等消耗。skiplist中p=1/2时,每个节点所包含的平均指针数目为2;skiplist中p=1/4时,每个节点所包含的平均指针数目为1.33;
  2. skiplist相比哈希表而言,就没有那么大的优势了哈希表平均时间复杂度是O(1),比skiplist快。。
    skiplist优势如下:
    a、遍历数据有序b、skiplist空间消耗略小一点,哈希表存在链接指针和表空间消耗。
    b、哈希表扩容有性能损耗。
    c、哈希表再极端场景下哈希冲突高,效率下降厉害,需要红黑树补足接力,实现复杂。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/480078.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UI设计20问(01):如何规避公说公有理婆说婆有理。

hello&#xff0c;我是大千UI工场&#xff0c;这次又开辟了一个新专题&#xff0c;回答UI设计中经常碰到问题&#xff0c;本期先回答UI设计评判标准的问题&#xff0c;欢迎关注评论点赞转发。 一、什么是公说公有理婆说婆有理 "公说公有理&#xff0c;婆说婆有理"是…

C++中自定义类型使用标准输入cin输出cout

自定义类型的输出 引言示例一运行结果示例二运行结果注意点 引言 当自己定义的数据为一些复杂数据&#xff0c;不再为基本数据类型&#xff0c;这时候要使用cout输出这些数据&#xff0c;就需要重载输出运算符<<,这样就可以使用cout来输出自定义的数据&#xff0c;相同如…

Python——元组

一、元组特性介绍 元组和列表⼀样&#xff0c;也是⼀种序列类型的数据。 唯⼀的不同是&#xff0c;元组是相对不可变的。 二、⾼效创建元组 In [1]: t1 () # 创建 空 元素的元组In [2]: type(t1) Out[2]: tuple有元素的元组实际上是使⽤英⽂的逗号创建的 In [3]:…

Vue3自定义全局指令批量注册

指令封装代码&#xff1a; import type { App } from "vue";const content {mounted(el : any, binding : any) {console.dir(binding.value);el.remove();} };const operate {mounted(el : any, binding : any) {console.dir(binding.value);el.remove();} };cons…

认识TypeScript 中的接口和类

&#x1f3ac; 江城开朗的豌豆&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 &#x1f4dd; 个人网站 :《 江城开朗的豌豆&#x1fadb; 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 接口 类 江城开朗的豌豆 在 TypeScript 中&…

Linux下多核CPU指定程序运行的核

设置程序在指定CPU核心运行 一、如何查看程序运行的CPU信息 1.1 查看当前系统CPU有几个核心 查看CPU核心数量&#xff1a;lscpu 1.2 查看程序的PID ps aux|grep cpu_test1.3 查看程序可运行的CPU taskset -c -p pid1.4 设置程序在指定核心上运行 1.4.1 通过运行时的参数设…

课后延时服务选课报名管理系统功能清单

课后延时服务选课报名管理系统分为学校端&#xff0c;培训机构端&#xff0c;家长端。 学校端提供学生管理&#xff0c;课程管理&#xff0c;班级管理&#xff0c;班级排课&#xff0c;班级课表&#xff0c;可直接安排学生入班上课&#xff0c;查看学生考勤情况&#xff0c;查…

Microsoft Visio 摄像机图标

Microsoft Visio 摄像机图标 1. 更多形状 -> 搜索形状2. 摄像机References 1. 更多形状 -> 搜索形状 2. 摄像机 ​​​ References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

[Bug解决] Invalid bound statement (not found)出现原因和解决方法

1、问题描述 在写了一个很普通的查询语句之后&#xff0c;出现了下面的报错信息 org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.xxx.oauth.mapper.WxVisitorQrBeanMapper.selectByComIdAndEmpId at org.apache.ibatis.binding.Mappe…

市场复盘总结 20240220

仅用于记录当天的市场情况&#xff0c;用于统计交易策略的适用情况&#xff0c;以便程序回测 短线核心&#xff1a;不参与任何级别的调整&#xff0c;采用龙空龙模式 一支股票 10%的时候可以操作&#xff0c; 90%的时间适合空仓等待 二进三&#xff1a; 进级率中 19% 最常用…

vue3+ant design 4.x版本遇见message不显示问题。

自己打断点到success&#xff0c;但是就是没有全局显示。 第一看自己的全局引入是否有问题&#xff1a; import { createApp } from vue; import ./style.css; import App from ./App.vue; import Antd from ant-design-vue; import ant-design-vue/dist/reset.css; import ro…

基于Springboot+Vue的超市管理系统源码

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、项目背景介绍&#xff1a; 随着社会经济的发展和…