理论基础
题目链接/文章讲解:代码随想录
视频讲解:带你学透回溯算法(理论篇)| 回溯法精讲!_哔哩哔哩_bilibili
回溯法也可以叫做回溯搜索法,它是一种搜索的方式。回溯是递归的副产品,只要有递归就会有回溯。
回溯法的效率
回溯法并不是什么高效的算法。因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。
那么既然回溯法并不高效为什么还要用它呢?因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。
回溯法解决的问题
回溯法,一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
题目分类
回溯法模板
- 回溯搜索的遍历过程
回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
如图:
回溯函数遍历过程伪代码如下:
def backtracking(参数) :if (终止条件) :存放结果returnfor (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}
for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。
backtracking这里自己调用自己,实现递归。
从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。
77. 组合
视频讲解:带你学透回溯算法-组合问题(对应力扣题目:77.组合)| 回溯法精讲!_哔哩哔哩_bilibili
剪枝操作:带你学透回溯算法-组合问题的剪枝操作(对应力扣题目:77.组合)| 回溯法精讲!_哔哩哔哩_bilibili
把组合问题抽象为如下树形结构:
可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。
第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。
每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。
图中可以发现n相当于树的宽度,k相当于树的深度。
图中每次搜索到了叶子节点,我们就找到了一个结果。
相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。
class Solution:def combine(self, n: int, k: int) -> List[List[int]]:result = []self.backtracking(n,k,1,[],result)return resultdef backtracking(self,n,k,startIndex,path,result): #需要startIndex来记录下一层递归,搜索的起始位置 if len(path) == k:result.append(path[:])return for i in range(startIndex,n+1):path.append(i)self.backtracking(n,k,i+1,path,result)path.pop()
剪枝优化
剪枝就是优化for循环
举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。
这么说有点抽象,如图所示:
图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。
所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。
优化过程如下:
-
已经选择的元素个数:path.size();
-
还需要的元素个数为: k - path.size();
-
在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历
优化代码如下:
lass Solution:def combine(self, n: int, k: int) -> List[List[int]]:result = [] # 存放结果集self.backtracking(n, k, 1, [], result)return resultdef backtracking(self, n, k, startIndex, path, result):if len(path) == k:result.append(path[:])returnfor i in range(startIndex, n - (k - len(path)) + 2): # 优化的地方path.append(i) # 处理节点self.backtracking(n, k, i + 1, path, result)path.pop() # 回溯,撤销处理的节点