Yolov8有效涨点:YOLOv8-AM,添加多种注意力模块提高检测精度,含代码,超详细

前言

2023 年,Ultralytics 推出了最新版本的 YOLO 模型。注意力机制是提高模型性能最热门的方法之一。

本次介绍的是YOLOv8-AM,它将注意力机制融入到原始的YOLOv8架构中。具体来说,我们分别采用四个注意力模块:卷积块注意力模块(CBAM)、全局注意力机制(GAM)、高效通道注意力(ECA)和随机注意力(SA)来设计改进模型并在数据集上进行测试。实验结果表明,基于ResBlock + CBAM(ResCBAM)的YOLOv8-AM模型在IoU 50(mAP 50)下的平均精度提到了2.2%,达到了state-of-the-art(SOTA)表现。相反,结合GAM的YOLOv8-AM模型获得了的mAP @50并不是一个令人满意的增强。因此,我们将ResBlock和GAM结合起来,引入ResGAM设计另一个新的YOLOv8-AM模型,获得一个较为满意的结果。

目录

前言

注意力机制:

Convolutional Block Attention Module

Efficient Channel Attention

Shuffle Attention

Global Attention Mechanism

实验结果(供参考)

可论文指导--------->v jiabei-545

改进代码(失效+ v 👆)


注意力机制:
带有YOLOv8-AM的结构图

YOLOv8 架构由四个关键组件组成:Backbone、Neck、Head 和 Loss Function。 Backbone 融合了 Cross Stage Partial (CSP) 概念,具有减少计算负载、同时增强 CNN 学习能力的优势。如图所示,YOLOv8与采用C3模块的YOLOv5不同,采用C2f模块,该模块集成了C3模块和YOLOv7中的扩展ELAN(E-ELAN)概念。

YOLOv8-AM模型架构详解,其中注意力模块为Shuffle Attention(SA)、Efficient Channel Attention(ECA)、Global Attention Mechanism(GAM)、ResBlock + Convolutional Block Attention Module(ResCBAM)

Convolutional Block Attention Module
CBAM架构

CBAM 包括通道注意力(C-Attention)和空间注意力(S-Attention),如图所示。给定一个中间特征图,CBAM 通过等式依次推断出 1D 通道注意力图  和 2D 空间注意力图 。

ResBlock + Convolutional Block Attention Module

原理和resnet一样 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 9  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, ResBlock_CBAM, [512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, ResBlock_CBAM, [256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 20 (P4/16-medium)- [-1, 1, ResBlock_CBAM, [512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 24 (P5/32-large)- [-1, 1, ResBlock_CBAM, [1024]]- [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)
Efficient Channel Attention
Efficient Channel Attention

ECA 主要包含跨通道交互和具有自适应卷积核的一维卷积,如图 所示。跨通道交互代表了一种组合特征的新方法,增强了特定语义的特征表达。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 9  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, ECAAttention, [512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, ECAAttention, [256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 20 (P4/16-medium)- [-1, 1, ECAAttention, [512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 24 (P5/32-large)- [-1, 1, ECAAttention, [1024]]- [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)
Shuffle Attention
Shuffle Attention

 SA将输入特征图分为不同的组,利用Shuffle Unit将通道注意力和空间注意力整合到每个组的一个块中,如图所示。随后,子特征被聚合,并且“ ShuffleNetV2 中使用的“Channel Shuffle”算子用于促进各种子特征之间的信息通信。对于通道注意力,SA 采用 GAP 来捕获和嵌入子特征。此外,使用带有 sigmoid 函数的简单门控机制来创建紧凑的函数,以促进精确和自适应的选择。

# SA.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 9  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, ShuffleAttention, [512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, ShuffleAttention, [256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 20 (P4/16-medium)- [-1, 1, ShuffleAttention, [512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 24 (P5/32-large)- [-1, 1, ShuffleAttention, [1024]]- [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)
Global Attention Mechanism
Global Attention Mechanism

 GAM采用了CBAM提出的由通道注意力和空间注意力组成的主要架构,并重新设计了子模块,如图所示。此外,我在GAM内的各层之间添加了快捷连接,这使得输入能够更快地向前传播。

# GAM.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 9  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, GAM_Attention, [512,512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, GAM_Attention, [256,256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 20 (P4/16-medium)- [-1, 1, GAM_Attention, [512,512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 24 (P5/32-large)- [-1, 1, GAM_Attention, [1024,1024]]- [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)
ResBlock + Global Attention Mechanism

 原理和resnet一样

实验结果(供参考)

ResBlock + Convolutional Block Attention Module
Shuffle Attention

Efficient Channel Attention
Global Attention Mechanism

ResBlock + Global Attention Mechanism
定量比较(Precision/Recall/F1/mAP)

可论文指导--------->v jiabei-545
改进代码(失效+ v 👆)

链接: https://pan.baidu.com/s/1Fi7ghwJ6XiXrDDnoCvlvrQ?pwd=zk88 提取码: zk88 

欢迎大家在评论区进行讨论

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/491513.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入探究Nginx的使用方法

目录 引言 一、网络状态页 二、Nginx 第三方模块 三、变量 (一)内置变量 (二)自定义变量 四、自定义日志 (一)有关日志的配置信息 (二)error日志的设置 1.日志的等级 2.自…

Unity(第六部)向量的理解和算法

标量:只有大小的量。185 888 999 (类似坐标) 向量:既有大小,也有方向。(类似以个体为主体的方向,前方一百米) 向量的模:向量的大小。(类似以个体为主体的方向,前方一百米、只取一百米…

Qt QWidget 简约美观的加载动画 第四季

&#x1f60a; 第四季来啦 &#x1f60a; 效果如下: 只有三个文件,可以直接编译运行的 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QVBoxLayout> #include <QGridLayout> int main(int argc, char *argv[]) …

ARM Cortex-X5 传言表现不佳,高功率浪涌和低多核分数影响即将推出的核心设计

ARM 的新 Cortex-X5 设计似乎遇到了问题&#xff0c;有新的传言称&#xff0c;超级核心在提高时钟速度时会经历严重的高功耗&#xff0c;并且当最大功率限制降低时&#xff0c;多核性能会下降。虽然这对高通来说可能不是问题&#xff0c;因为据说其 Snapdragon 8 Gen 4 采用定制…

同样的故事,三星靠中国以外的市场称霸,国产手机靠国内崛起

2023年全球市场的折叠手机销量增速已大幅下降至25%&#xff0c;而且增长主要来自中国市场&#xff0c;由此形成一个特殊的现象&#xff0c;那就是中国手机依靠本土市场崛起&#xff0c;三星则依靠占领中国以外的市场称霸全球。 数据显示2023年全球市场的折叠手机销量为1590万部…

Arduino中安装ESP32网络抽风无法下载 暴力解决办法 python

不知道什么仙人设计的arduino连接网络部分&#xff0c;死活下不下来。&#xff08;真的沙口&#xff0c;第一次看到这么抽风的下载口&#xff09; 操作 给爷惹火了我踏马解析json选zip直接全部下下来 把这个大家的开发板管理地址下下来跟后面python放在同一目录下&#xff0c…

liunx前后端分离项目部署

文章目录 1、nginx的安装和自启动2.nginx负载均衡3.前后端项目部署-后端部署4.前后端项目部署-前端部署 1、nginx的安装和自启动 yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel1.安装我们nginx所需要的依赖 wget http://nginx.org/download/nginx-1.…

【MySQL面试复习】索引创建的原则有哪些?

系列文章目录 在MySQL中&#xff0c;如何定位慢查询&#xff1f; 发现了某个SQL语句执行很慢&#xff0c;如何进行分析&#xff1f; 了解过索引吗&#xff1f;(索引的底层原理)/B 树和B树的区别是什么&#xff1f; 什么是聚簇索引&#xff08;聚集索引&#xff09;和非聚簇索引…

MySQL锁三部曲:临键、间隙与记录的奇妙旅程

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 MySQL锁三部曲&#xff1a;临键、间隙与记录的奇妙旅程 前言临键锁的奥秘间隙锁记录锁 前言 在数据库世界中&#xff0c;锁是维护数据完整性的一种关键机制。而MySQL中的临键锁、间隙锁和记录锁则是锁…

matlab倒立摆小车LQR控制动画

1、内容简介 略 54-可以交流、咨询、答疑 2、内容说明 略 摆杆长度为 L&#xff0c;质量为 m 的单级倒立摆(摆杆的质心在杆的中心处)&#xff0c;小车的质量为 M。在水平方向施加控制力 u&#xff0c;相对参考系产生位移为 y。为了简化问题并且保其实质不变&#xff0c;忽…

快速启动-后台管理系统

目录 Gitee人人开源 后端快速启动 1.clone仓库到本地 2.初始化数据库 3.更改数据库连接 4.启动项目验证 前端快速启动 1.克隆仓库 2.vsCode打开 3.控制台npm install 4.验证测试 时代已然不同&#xff0c;后台管理也可以使用脚手架方式快速启动。 Gitee人人开源 地…

QT GUI编程常用控件学习

1 GUI编程应该学什么 2 QT常用模块结构 QtCore: 包含了核心的非GUI的功能。主要和时间、文件与文件夹、各种数据、流、URLs、mime类文件、进程与线程一起使用 QtGui: 包含了窗口系统、事件处理、2D图像、基本绘画、字体和文字类 QtWidgets: 包含了一些列创建桌面应用的UI元素…