文献阅读:Transformers are Multi-State RNNs

  • 文献阅读:Transformers are Multi-State RNNs
    • 1. 内容简介
    • 2. 方法介绍
      • 1. 基础回顾
        • 1. RNN
        • 2. Transformer
      • 2. Transformer解构
        • 1. MSRNN
        • 2. Transformer
      • 3. TOVA
        • 1. 现有转换策略
        • 2. TOVA
    • 3. 实验考察 & 结论
      • 1. 实验设计
      • 2. 实验结果
        • 1. LM
        • 2. 长文本理解
        • 3. 文本生成
      • 3. 细节考察
    • 4. 总结 & 思考
  • 文献链接:https://arxiv.org/abs/2401.06104
  • GitHub链接:https://github.com/schwartz-lab-NLP/TOVA

1. 内容简介

这篇文章是今年1月Meta发表的一篇对Transformer的解构工作。

它对Transformer进行了更深入的解析和考察,发现Transformer的self attention机制等价于一个无限状态的MSRNN(multi-state RNN),并在此基础上对MSRNN进行了优化,提出了一个TOVA的MSRNN压缩策略,使之效果超过了其他的MSRNN,并能够与Transformer本身相提并论。而在内存方面,则显著优于经典的Transformer模型。

在这里插入图片描述

下面,我们就来具体看一下文中对于Transformer的具体考察以及文中提出的TOVA方法究竟是怎样的一个设计思路。

2. 方法介绍

1. 基础回顾

在解构Transformer以及引入TOVA之前,文中首先回顾了一下RNN和Transformer本身,这里,为了保持文章在结构上的完整性,我们也简略的回顾一下RNN和Transformer本身。

1. RNN

首先的话,RNN的话是一个迭代的解构,模型本身维护一个隐态 h t h_t ht,然后根据输入 x t x_t xt进行迭代:

x t l + 1 , h t l = f ( x t l , h t − 1 l ) x_t^{l+1}, h_{t}^{l} = f(x_t^l, h_{t-1}^l) xtl+1,htl=f(xtl,ht1l)

2. Transformer

Transformer的话则是self-attention的解构,具体表达式如下:

X l + 1 = F F N ( A t t n ( X l ) ) = F F N ( S o f t m a x ( Q l ⋅ ( K l ) T ) ⋅ V l ) \begin{aligned} X^{l+1} &= \mathop{FFN}(\mathop{Attn}(X^l)) \\ &= \mathop{FFN}(\mathop{Softmax}(Q^l\cdot (K^l)^T) \cdot V^l) \end{aligned} Xl+1=FFN(Attn(Xl))=FFN(Softmax(Ql(Kl)T)Vl)

2. Transformer解构

有了上面的基础,我们来看一下文中是如何说明Transformer的本质就是一个无线state的MSRNN的。

我们将分两部分来说明这个问题:

  1. MSRNN是什么
  2. Transformer怎么对应到一个MSRNN

下面,我们来看一下文中对于这两个问题的回答。

1. MSRNN

首先,我们来看一下MSRNN是什么,本质上来说,MSRNN还是一个RNN,不过RNN当中的隐态是一个向量,而MSRNN则是用一个矩阵来替代向量,直观上理解就是有多个隐态,即multi-state。

用公式表达即为:

x t l + 1 , H t l = f ( x t l , H t − 1 l ) x_t^{l+1}, H_{t}^{l} = f(x_t^l, H_{t-1}^l) xtl+1,Htl=f(xtl,Ht1l)

2. Transformer

然后,我们再来看一下Transformer,如前所述,Transformer的每一个module可以写为:

X l + 1 = F F N ( S o f t m a x ( Q l ⋅ ( K l ) T ) ⋅ V l ) X^{l+1} = \mathop{FFN}(\mathop{Softmax}(Q^l\cdot (K^l)^T) \cdot V^l) Xl+1=FFN(Softmax(Ql(Kl)T)Vl)

我们可以将其重写为:

x t l + 1 = F F N ( S o f t m a x ( q t l ⋅ ( K t l ) T ) ⋅ V t l ) x_{t}^{l+1} = \mathop{FFN}(\mathop{Softmax}(q_t^l\cdot (K_t^l)^T) \cdot V_t^l) xtl+1=FFN(Softmax(qtl(Ktl)T)Vtl)

亦即:

x t l + 1 , ( K t l , V t l ) = f l ( x t l , ( K t l , V t l ) ) x_{t}^{l+1}, (K_t^l, V_t^l) = f^l(x_t^l, (K_t^l, V_t^l)) xtl+1,(Ktl,Vtl)=fl(xtl,(Ktl,Vtl))

因此,从定义式上来看,Transformer确实可以理解为无限维度的MSRNN。

3. TOVA

综上,我们已经可以发现,在形式上而言,Transformer可以视为一个无限state的MSRNN,但是无限state显然在实现层面并不现实,因此,要想要真正将其对应到MSRNN,我们需要一个无限维转换为有限维的转换策略。

文中的话也是首先讨论了一下现有的几个转换的方法,然后在此基础上提出了他们自己的转换方法,即他们所谓的TOVA方法。

下面,我们来具体看一下这两部分的内容。

1. 现有转换策略

首先,我们来看一下当前已有的一些无限维转有限维的策略,文中主要给出了三种方法:

  1. Window
    • 只保留最后k个token
  2. Window + i
    • 保留最后k个token以及头部的i个token
  3. H 2 O H_2O H2O
    • 保留最后k个token,然后动态通过attention score额外多保留i个token
2. TOVA

然后,我们来看一下文中提出的TOVA方法,其全称为Token Omission Via
Attention (TOVA),思路上其实也很直接,就是直接通过attention score选择attention score最高的k个token进行保留,文中给出示意图如下:

在这里插入图片描述

3. 实验考察 & 结论

下面,我们来考察一下文中的实验结果。

我们将分以下几个部分对文中的内容进行一下整理:

  1. 文中的实验设计
  2. 具体的实验结果
  3. TOVA的拆解实验

1. 实验设计

首先,我们来看一下文中的实验设计,主要包括两部分的内容:

  1. 具体采用的实验
  2. 实验中使用的模型

其中,关于文中具体采用的实验的话,主要是长文本上的实验,包括:

  1. LM的ppl考察
  2. 长文本的理解实验
  3. 文本生成任务

而关于文中使用的模型的话,文中主要使用了以下三类模型:

  1. LLama-2-7B
  2. Mistral-7B
  3. Yi-7B

2. 实验结果

下面,我们来看一下文中给出的具体实验结果。

1. LM

首先,关于Language Model的ppl,文中得到结果如下:

在这里插入图片描述

可以看到:

  • 在各类策略下,TOVA能够获得最好的效果表达,且在各个模型下都有一致的结论。
2. 长文本理解

文中关于长文本当中理解任务的实验结果则如下所示:

在这里插入图片描述

可以看到:

  • 无论是在长文本概括任务还是长文本QA任务当中,TOVA的效果都显著优于其他的转换策略。
  • 同样的,在长文本理解任务当中,TOVA同样在不同的模型当中都有一致的有效性表达。
3. 文本生成

最后,文中还在生成任务当中对TOVA的效果进行了一下考察,具体来说的话,就是令TOVA和GPT4分别进行生成,然后交给人来标注对比结果的好坏,得到结果如下:

在这里插入图片描述

可以看到:

  • 随着文本的增长,TOVA的效果逐步追上GPT4,说明TOVA在长文本下确实有效,且效果拔群。

3. 细节考察

然后,除了对于TOVA效果的基础考察,文中还对TOVA进行了细节的拆解,具体来说,主要就是考察了一下几个问题:

  1. TOVA保留的是哪些位置的token
  2. TOVA对于头部的token的留存度
  3. TOVA保留的具体是哪些token

文中得到的具体实验结果如下:

在这里插入图片描述

在这里插入图片描述

可以看到:

  • 在图7当中,每一行代表对应的step当中参与到生成当中的token,可以看到,整体来说,邻近的token会更重要,当这也不是必然的,有时候长程的token也会参与其中,反而是短程的会被过滤掉。
  • 从图8可以看到,前25个token都悲保留了很长的距离,且第一个token尤为关键;
  • 从图9可以看到,一些标点符号类型的token会被更倾向于保留下来。

4. 总结 & 思考

综上,文中对Transformer进行了一下结构上的解构分析,发现其本质上就是一个无限维的MSRNN,且通过一定的压缩策略,可以用一个有限维的MSRNN对其进行逼近。

基于此,文中给出了一个名为TOVA的压缩策略,碾压了当前已有的其他压缩策略,并在长文本当中的效果逼近了GPT4,而在batch size方面可以扩大8倍,即效率上可以比当前的Transformer结构更好。

这个还是非常厉害的,Meta感觉确实还是做了不少基础方面的工作,不过具体TOVA策略下的MSRNN能不能干掉Transformer估计现在也说不好,毕竟文中也没有给什么直接的比较,估计效果上还是有差。

后面再看看吧,看看能不能有什么工作能够最终干掉transformer框架吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/491628.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

时间序列分析实战(三):时序因素分解法

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍: 研一|统计学|干货分享          擅长Python、Matlab、R等主流编程软件          累计十余项国家级比赛奖项,参与研究经费10w、40w级横向 文…

Spring Boot Profiles简单介绍

Spring Boot application.properties和application.yml文件的配置 阅读本文之前,请先阅读上面的配置文件介绍。 Spring Boot Profiles是一个用于区分不同环境下配置的强大功能。以下是如何在Spring Boot应用程序中使用Profiles的详细步骤和代码示例。 1. 创…

【深度学习笔记】3_14 正向传播、反向传播和计算图

3.14 正向传播、反向传播和计算图 前面几节里我们使用了小批量随机梯度下降的优化算法来训练模型。在实现中,我们只提供了模型的正向传播(forward propagation)的计算,即对输入计算模型输出,然后通过autograd模块来调…

【国产MCU】-CH32V307-定时器同步模式

定时器同步模式 文章目录 定时器同步模式1、定时器同步模式介绍2、驱动API介绍3、定时器同步模式实例1、定时器同步模式介绍 CH32V307的定时器能够输出时钟脉冲(TRGO),也能接收其他定时器的输入(ITRx)。不同的定时器的ITRx的来源(别的定时器的TRGO)是不一样的。 通用定…

ShardingSphere 5.x 系列【14】广播表、单表

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列ShardingSphere 版本 5.4.0 源码地址:https://gitee.com/pearl-organization/study-sharding-sphere-demo 文章目录 1.广播表1.1 概述1.2 案例演示1.2.1 环境准备1.2.2 配置1.2.3 测试2. 单表2.…

Oracle EBS GL 外币折算逻辑

背景 由于公司财务在10月份期间某汇率维护错误,导致帐套折算以后并合传送至合并帐套生成合并日记帐凭证的借贷金额特别大,但是财务核对的科目余额有没有问题,始终觉得合并日记帐生成会计分发有问题,需要我们给出外币折算逻辑。 基础设置 汇率 Path: GL->设置->币种-&…

matlab|计及源荷不确定性的综合能源生产单元运行调度与容量配置随机优化模型

目录 1 主要内容 1.1 风光场景聚类 1.2 主模型程序结果 1.3 随机模型和确定性模型对比 1.4 有无储气对比 1.5 煤价灵敏性分析 1.6 甲烷价格灵敏性分析 2 部分程序 3 下载链接 1 主要内容 本程序复现《计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机…

论文精读--GPT3

不像GPT2一样追求zero-shot,而换成了few-shot Abstract Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnos…

LeetCode 0235.二叉搜索树的最近公共祖先:用搜索树性质(不遍历全部节点)

【LetMeFly】235.二叉搜索树的最近公共祖先:用搜索树性质(不遍历全部节点) 力扣题目链接:https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-search-tree/ 给定一个二叉搜索树, 找到该树中两个指定节点的最近公…

[嵌入式系统-35]:RT-Thread -20- 新手指南:在Keil MDK-ARM 模拟器上运行RT-Thread

目录 前言: 一、Keil MDK-ARM 模拟器概述 1.1 Keil概述 1.2 Keil MDK-ARM 1.3 Keil MDK-ARM软件仿真模拟器 1.4 Keil模拟器支持的CPU类型 二、Keil MDK ARM安装 前言: 一般嵌入式操作系统因为它的特殊性,往往和硬件平台密切相关连&am…

AI书籍推荐 | 使用 ChatGPT MILLIONAIRE 指南走向财务自由

本文中的链接若打不开,您可能需要科学上网哦! 跳进数字时代的大潮,想把握住人工智能带来的财富机会? 那就别眨眼!一本名为《ChatGPT MILLIONAIRE》的书籍,你可以了解一下。从Chat GPT精通系列来袭&#x…

phtread_cancel函数用于取消线程,但不是实时的

如上图所示,线程函数中没有取消点(一般是一些系统调用----man 7 pthreads查看,自定义函数是无效的),则使用pthread_cancle函数不生效。 解决方法:可以添加pthread_testcancle(); 通过pthread_join回收的…